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Foreword

Startigg with Bargmann’s paper on the infinite dimensional representations of
SL,(R), the theory of representations of semisimple Lie groups has evolved to
a rather extensive production. Some of the main contributors have been:
Gelfand-Naimark and Harish-Chandra, who considered the Lorentz group in
the late forties; Gelfand-Naimark, who dealt with the classical complex
groups, while Harish-Chandra worked out the general real case, especially
through the derived representation of the Lie algebra, establishing the
Plancherel formula (Gelfand-Graev also contributed to the real case); Car-
tan, Gelfand-Naimark, Godement, Harish-Chandra, who developed the
theory of spherical functions {Godement gave several Bourbaki seminar
reports giving proofs for a number-of spectral results not accessible other-
wise); Selberg, who took the group modulo a discrete subgroup and obtained
the trace formula; Gelfand, Fomin, Pjateckii-Shapiro, and Harish-Chandra,
who established connections with automorphic forms; Jacquet-Langlands,
who pushed through the connection with L-series and Hecke theory. This
history is so involved and so extensive that I am incompetent to give a really
good account, and I refer the reader to bibliographies in the books by
Warner, Gelfand-Graev -Pjateckii-Shapiro, and Helgason for further infor-
mation. A few more historical comments will be made in the appropriate
places in the book.

It is not easy to get into representation theory, especially for someone
interested in number theory, for a number of reasons. First, the general
theorems on higher dimensional groups require massive doses of Lie theory.
Second, one needs a good background in standard and not so standard
analysis on a fairly broad scale. Third, the experts have been writing for each
other for so long that the literature is somewhat labyrinthine.

I got interested because of the obvious connections with number theory,
principally through Langlands’ eonjecture relating representation theory to
clliptic curves [La 2]. This is a glcbal conjecture, in the adelic theory. |

v



vi FOREWORD

realized soon enough that it was best to acquire a good understanding of the
real theory before getting everything on the adeles. I think most people who
have worked in representatidns have looked at SL,(R) first, and I know this is
the case for both Harish and Langlands..

Therefore, as I learned the theory myself it seemed a good idea to write
up SL,(R). The topics are as follows:

1. -We first show how a representation decomposes over the maximal
compact subgroup K consisting of all matrices

( cosd sind )

~sind cosf)

and see that an irreducible representation decomposes in such a way that
each character of K (indexed by an integér) occurs at most once.

2. We describe the Iwasawa decomposition G = ANK, from which most
of the structure and theorems on G follow. In particular, we obtain represen-
tations of G induced by characters of 4.

3. We discuss in detail the case when the trivial representation of K
occurs: This is the theory of spherical functions. We need only Haar measure
for this, thereby making it much more accessible than in other presentations
using Lie theory, structure theory, and differential equations.

‘4. We describe a continuous series of representations, the induced ones,
some of which are unitary.

5. We discuss the derived representation on the Lie algebra, getting into

the infinitesimal theory, and proving the uniqueness of any possible unitariza-
tion. We also characterize the cases when a unitarization is possible, thereby
obtaining the classification of Bargmann. Although not needed for the
Plancherel formula, it is satisfying to know that any unitary irreducible
representation is infinitesimally isomorphic to a subrepresentation of an
induced one from a quasicharacter of the diagonal group. The derived
representation of the Lie algebra on the algebraic space of K-finite vectors
plays a crucial role, essentially algebraicizing the situation.

6. The various representations are related by the Plancherel inversion
formula by Harish-Chandra’s method of integrating over conjugacy classes.

7. We give a method of Harish-Chandra to unitarize the “discrete
series.” i.e. those representations admitting a highest and lowest weight vector
in the space of K-finite vectors.

8. We discuss the structure of the algebra of differential operators, with
special cases of Harish-Chandra’s results on SL,(R) giving the center of the
universal enveloping algebra and the commutator of K. At this point, we have
enough information on differential equations to get the one fact about
spherical functions which we could not prove before, namely that there are no
other examples besides those exhibited in Chapter IV.
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The above topics in a sense conclude a first part of the book. The second
part deals with the case when we take the group modulo a discrete subgroup.
The classical case is SL,(Z). This leads to inversion formulas and spectral
decomposition theorems on L¥T'\ G), which constitute the remaining chap-
ters.

I had originally intended to include the Selberg trace formula over the
reals, but in the case of non-compact quotient this addition would have been
sizable, and the book was already getting big. I therefore decided to omit it,
hoping to return to the matter at a later date.

A good portion of the first part of the book depends only on playing wuh
Haar measure and the Iwasawa decomposition, without infinitesimal con-
siderations. Even when we use these, we are able to carry out the Plancherel
formula and the discussion of the various representations without caring
whether we have “all” irreducible unitary representations, or “all” spherical

functions (although we prove incidentally that we do). A separate chapten

deals with those theorems directly involving partial differential equations via
the Casimir operator, and analytical considerations using the regularity
theorem for elliptic differential equations. The organization of the book is

therefore designed for maximal flexibility and minimal a priori knowledge. -

The methods used and the notation are carefully chosen to suggest the
approach which works in the higher dimensional case.

Since I address this book to those who, like me before I wrote it, don't
know anything, I have made considerable efforts to keep it self-contained. I
reproduce the proofs of a lot of facts from advanced calculus, and also
several appendices on various parts of analysis (spectral theorem for bounded
and unbounded hermitian operators, elliptic differential equations, etc.) for

the convenience of the reader. These and my Real Analysis form a sufficient
background.

The Faddeev paper on the spectral decomposition of the Laplace opera-
tor on the upper half-plane is an exceedingly good introduction to analysis,
placing the latter in a nice geometric framework. Any good senior under-
graduate or first year graduate student should be able to read most of it, and
I have reproduced it (with the addition of many details left out to more expert
-readers by Faddeev) as Chapter XIV. Faddeev’s method comes from pertur-
bation theory and scattering theory, and as such is interesting for its own
sake, as well as to analysts who may know the analytic part and may want to
see how it applies in the group theoretic context. Kubota’s recent book on
Eisenstein series (which appeared while the present book was in production)
uses a different method (Selberg-Langlands), and assumes most of the details
of functional analysis as known. Therefore, neither Kubota’s book nor mine
makes the other unnecessary.

It would have been incoherent to expand the present book to a global
context with adeles. I hope nevertheless that the reader will be well prepared
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to move in that direction after having gotten acquainted with SL,(R). The
book by Gelfand~Graev-Pjateckii-Shapiro is quite useful in that respect.

1 have profited from discussions with many people during the last two
years, some of them at the Williamstown conference on representation theory
in 1972. Among them | wish to thank specifically Godement, Harish-
Chandra, Helgason, Labesse, Lachaud, Langlands, C. Moore, Sally, Wilfried
Schmid, Stein. Peter Lax and Ralph Phillips were of great help in teaching me
some PDE. I also thank those who went through the class at Yale and made
helpful contributions during the time this book was evolving. I am especially
grateful to R. Bruggeman<for his careful reading of the manuscript. I also
want to thank Joe Repka for helping me with the proofreading.

New Haven, Connecticut

Serge Lang
September 1974



Notation ,

To denote the fact that a function is bounded, we write f = O(1). If f, g are
two functions on a space X and g > 0, we write f = O(g) if there exists a
constant C such that | f(x)| < Cg(x) for all x€ X. If X = R is the real line,
say, the above relation may hold for x suificiently large, say x > x;, and then
we express this by writing x - oo. Instead of f = O(g), 'we also use the
Vinogradov notation,

f< g

On a topological space X, C(X) is the space of continuous functions. If X
is a C* manifold (nothing worse than open subsets of euclidean space, or
something like SL,(R), with obvious coordinates, will occur), we let C*(X)
be the space of C* functions. We put a lower index ¢ to indicate compact
support. Hence C.(X) and C*(X) are the spaces of continuous and C*®
functions with compact support, respectively.

By the way, SL,(R) is the group of 2 X 2 real matrices with determinant 1.

An isomorphism is a morphism (in a category) having an inverse in this
category. An automorphism is an isomorphism of an object with itself. For
instance, a continuous linear automorphism of a normed vector space H is a
continuous linear map A: H — H for.which there exists a continuous linear
map B: H — H such that 4B = BA =1. A C® isomorphism is a C*®
mapping having a C* inverse.

If 'H is a Banach space, we let En(H) denote the Banach space of
continuous linear maps of H into itself. If / is a Hilbert space, we let Aut(H)
be the group of umitary automorphisms of H. We let GL(H) be the group of
continuous linear automorphisms of H with itself.

If G" is a subgroup of a group G we let
G'\G

Xiil
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be 'the space of right cosets of G'. If T operates on a set §, we let
P\&

be the space of I'-orbits. Certain right wingers put their discrete subgroup T
on the right. Gelfand-Graev-Pjateckii-Shapiro and Langlands put it on the
left. I agree with the latter, and hope to turn the right wingers into left
wingers. :

For the convenience of the reader we also include a summary of objects
used frequently throughout the book. with a very brief indication of their
espective definitions at the end of the book for quick reference.
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I General Results

§1. THE REPRESENTATION ON C,(G)

Let G be a locally compact group, always assumed Hausdorff. Let H be a
Banach space (which in most of our applications will be a Hilbert space). A
representation of G in / is a homomorphism

7 G — GL(H)

of G into the group of continuous linear automorphisms of H, such that for
each vector v € H the map of G into H given by

x > a(x)o

is continuous. One may say that the homomorphism is strongly continuous,
the strong topology being the norm topology on the Banach space. [We recall
here that the wesak topolegy on H is that topology having the smallest family
of open sets for which all functionals on H are continuous.}

A representation is called bounded if there exists a number C > 0 such |
that |#(x)| € C for all x€ G. If H is a Hilbert space and #(x) is unitary for
all x € G, i.e. preserves the norm, then the representation « is called unitary,
and is obviously bounded by 1.

For a representation, it suffices to verify the continuity condition above
on a dense subset of vectors; in other words:

Let w: G — GL(H) be a homomorphism and assume that for a dense set
of £ € H the map x > n(x)v is continuous. Assume that the image of some
neighborhood of the unit element e in G under n is bounded in GL(H). Then
7 is a represenlation.

This is trivially proved by three epsilons. Indeed, it suffices to verify the
continuity at the unit element. Let vE H and select v, close to v such that
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x > w(x)v, is continuous. We then use the triangle inequality
[r(x)o — o] < |r(x)o — 7(x)o)| + |7n(x)o, - v + fo, - of
to prove our assertion.

A representation 7 G — GL(H) is locally bounded, i.e. given a compact
subset K of G, the set w(K) is bounded in GL(H).

Proof. Let K be a compact subset of G. For each v € H the set n(K)v is
compact, whence bounded. By the uniform boundedness theorem (Real
Analysis, V111, §3) it follows that #(K) is bounded in GL(H).

For the convenience of the reader, we recall briefly the uniform bounded-
ness theorem.

Let {T;},c,; be a family of bounded operators in a Banach space E, and
assume that for each vEE the set {T,v},c, is bounded. Then the family
{T;);e, is bounded, as a subset of End(E).

Proof. Let.C, be the set of elements v € E such that
|T0| < n, alliel

Then C, is closed, and E is the union of the sets C,. It follows by Baire’s
theorem that some C, contains an open ball. Translating this open ball to the
origin yields an open ball B such that the union of the sets T,(B), i€/, is
bounded, whence the family { T;},., is bounded, as desired.

We let C.(G) denote the space of continuous functions on G with

compact support. It is an algebra under convolution, i.e. the product is
defined by

() = [ ol N0 &,
G
where dy is a Haar measure on G. We shall assume throughout that G is

unimodular, meaning that left Haar measure is equal to right Haar measure.
For any function f on G we denote by f~ the function f~ (x) = f(x "). Then

[ dx =[x~y dx = [ 1~ (x) dx.

Remark. When G is not unimodular, then by dniqueness of Haar meas-
ure, there is a modular function A: G — R* which is a’ continuous
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homomorphism into the positive reals, such that

f f(xa) dx = A(a) f f(x) dx.
’ G ) G

One then has

| fo S(x~)A(x) dx = fG (%) dx

by an obvious argument. It follows that A(x) dx is right Haar measure. The
typical non-unimodular group which will concern us, but not until Chapter
I11, is the group of triangular matrices

(o8 = (5.2

For this chapter, you can forget about the non-unimodular case.

The modular function occurs in a slightly more general context than
above. Let 7: G —> G be either an automorphism (group and topological) of
G, or an anti-automorphism, meaning

()" = y'x".

We write either x™ or "x for the effect of 7 on an element x€ G. By the
invariance of Haar measure, there exists a positive number A(~) such that

fG f(x7) dx = A(r) fa (x) dx,

because the expression on the left is a non-trivial invariant positive functional
on C_(G). We have the obvious composition rule

A(ra) = A(7) A(0).

In many applications, we have f2_ = Id, and therefore A(t) = 1, ie. 7 is
unimodular. This occurs in the context of matrices, when for instance r is the
transpose.

The basic example of a unimodular group is the group of matrices
G = GL,(R).
- The change of variables formula shows that Haar measure on G is equal to

_d'x
|det x|"



