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Foreword

The purpose of a first course in calculus is to teach the student the basic
notions of derivative and integral, and the basic techniques and applica-
tions which accompany them. The very talented students, with an ob-
vious aptitude for mathematics, will rapidly require a course in functions
of one real variable, more or less as it is understood by professional
mathematicians. This book is not primarily addressed to them (although
I hope they will be able to acquire from it a good introduction at an
early age).

1 have not written this course in the style I would use for an
advanced monograph, on sophisticated topics. One writes an advanced
monograph for oneself, because one¢ wants to give permanent form
to one’s vision of some beautiful part of mathematics, not otherwise ac-
cessible, somewhat in the manner of a composer setting down his sym-
phony in musical notation.

This book is written for the students to give them an immediate, and
pleasant, access to the subject. I hope that I have struck a proper com-
promise, between dwelling too much on special details and not giving
enough technical exercises, necessary to acquire the desired familiarity
with the subject. In any case, certain routine- habits of sophisticated
mathematicians are unsuitable for a first course,

Rigor. This does not mean that so-called rigor has to be abandoned.
The logical development of the mathematics of this course from the most
basic axioms proceeds through the following stages:

Set theory Numbers (i.e. real numbers)
Integers (whole numbers) Limits
Rational numbers (fractions) Derivatives and forward.



vi : - FOREWORD

No one in his right mind suggests that one should begin a course with
set theory. It happens that the most satisfactory place to jump into the
subject is between limits and derivatives. In other words, any student is
ready to accept as intuitively obvious the notions of numbers and limits
and their basic properties. Experience shows that the students do not
have the proper psychological background to accept a theoretical study
of limits, and resist it tremendously.

In fact, it turns out that one can have the best of both ideas. The
arguments which show how the properties of limits can be reduced to
those of numbers form a self-contained whole. Logically, it belongs
before the subject matter of our course. Nevertheless, we have inserted it
as an appendix. If some students feel the need for it, they need but read
it and visualize it as Chapter 0. In that case, everything that follows is .
as rigorous as any mathematician would wish it (so far as objects which
receive an analytic definition are concerned). Not one word need be
changed in any proof. I hope this takes care once and for all of possible
controversies concerning so-called rigor.

Most students will not feel any need for it. My opinion is that
epsilon-delta should be entirely left out of ordinary calculus classes.

Language and logic. It is not generally recognized that some of the
major difficulties’ in teaching mathematics are analogous to those in
teaching a foreign language. (The secondary schools are responsible for
this. Proper training in the secondary schools could entirely eliminate
this difficulty.) Consequently, 1 have made great efforts to carry the
student verbally, so to say, in using proper mathematical language. It
“seems to me essential that students be required to write their mathe-
matics papers in full and coherent sentences. A large portion of their
difficulties with mathematics stems from their slapping down mathe-
matical symbols and formulas isolated from a meaningful sentence and
appropriate quantifiers. Papers should also be required to be neat and
legible. They should not look as if a stoned fly had just crawled out of
an inkwell. Insisting on reasonable standards of expression will result in
drastic improvements of mathematical performance. The systematic use
of words like “let,” “there exists,” “for all,” “if...then," “therefore”
should be taught, as in sentences like:

Let f(x) be the function such that....

There exists a number such that....

For all numbers x with 0 < x < 1, we have....

If f is a differentiable function and K a constant such that
J'(x) = Kf(x), then f(x) = Ce** for some constant C.

Plugging in. I believe that it is unsound to view “theory” as adversary
to ‘applications or *“computations.” The present book treats both as
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complementary to each other. Almost always a theorem gives a tool for
more efficient computations (e.g. Taylor's formula, for computing values
of functions). Different classes will of course put different emphasis on
them, omitting some proofs, but I have found that if no excessive
pedantry is introduced, students are willing, and even eager, to under-
stand the reasons for the truth of a result, i.e. its proof.

It is a disservice to students to teach calculus (or other mathematics,
for that matter) in an exclusive framework of “plugging in” ready-made
formulas. Proper teaching consists in making the student adept at han-
dling a large number of techniques in a routine manner (in particuiar,
knowing how to plug in), but it also consists in training.students in
knowing some general principles which will allow them to deal with new
situations for which there are no known formulas to plug in. ;

It is impossible in one semester, or one year, to find the time to deal
with all desirable applications (economics, statistics, biology! chemistry,
physics, etc.). On the other hand, covering the proper balance between
selected applications and selected general principles will equip students to
deal with other applications or situations by themselves.

Worked-out problems and exercises. For the convenience of both stu-
dents and instructors, a large number of worked-out problems has been”
added in the present edition. Many of these have been put in the answer
section, to be referred to as needed. I did this for at least two' reasons.
First, in the text, they might obscure the main ideas of the course.
Second, it is a good idea to make students think about a problem before
they see it worked out. They are then much more receptive, and will
retain the methods better for having encountered the difficulties (what-
ever they are, depending on individual students) by themselves. Both
the inclusion of worked-out examples and their placement in the answer
section was requested by students. Unfortunately, the requirements for
good teaching, testing, and academic pressures are in conflict hefe. The
de facto tendency is for students to object to being asked to think (even
if they fail), because they are afraid of being penalized with bad grades
for homework. Instructors may cither make too strong requirements on
students, or may take the path of least resistance and never require any-
thing beyond plugging in new numbers in-a type of ‘exercise which has
already been worked out (in class or in the book). I belicve that testing
conditions (limited time, pressures of other courses and examinations)
make it difficult (if not unreasonable) to test swdcms other than with
basic, routine probiems. I do not conclude that the course should con-
sist only of this type of material. Some students often take the attitude
that if something is not on tests, then why should it be covered in the
course? 1 object very much to this attitude. I have no global solution to
these conflicting pressures.
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General organization. I have made no great innovations in the exposi-
tion of calculus. Since the subject was discovered some 300 years ago,
such innovations were out of the question,

I have cut down the amount of analytic geometry to what is both
necessary and sufficient for a general first course in this type of mathe-
matics. For some applications, more is required, but these applications
are fairly specialized. For instance, if one needs the special properties
concerning the focus of a parabola in a course on optics, then that is the
place to present them, not in a general course which is to serve mathe-
maticians, physicists, chemists, biologists, and engineers, to mention but
a few. I regard the tremendous emphasis on the analytic geometry of
conics which has been the fashion for many years as an unfortunate
historical accident. What is important is that the basic idea of represent-
ing a graph by a figure in the plane should be thoroughly understood,
together with basic examples. The more abstruse properties of ellipses,
parabolas, and hyperbolas should be skipped.

Differentiation and the elementary functions are covered first. Integra-
tion is covered second. Each makes up a coherent whole. For instance,
in the part on differentiation, rate problems occur three times, illustrating
the same general principle but in the contexts of several elementary func-
tions (polynomials at first, then trigonometric functions, then inverse
functions). This repetition at brief intervals is pedagogically sound, and
contributes to the coherence of the subject. It is also natural to slide
from integration into Taylor's formula, proved with remainder term by
-mtegratmg by parts. It would be slightly disagreeable to break this se-
quence.

Experience has shown that Chapters III through VIII makc up an
appropriate curriculum for ope term (differentiation and elementary func-
tions) while Chapters IX through XIII make up an appropriate curricu-
lum for a second term (integration and Taylor’s formula). The first two
chapters may be used for a quick review by classes which are not
especially well prepared.

I find that all these factors more than offset the possible disadvantage
that for other courses (physics, chemistry perhaps) integration is needed
early. This may be true, but so are the other topics, and unfortunately
the course has to be projected in a totally ordered way on the time axis.

In’ addition tor this, studying the log and exponential before integration
bas the advantage that we meet in a special concrete case the situa-
tion where we find an ‘antiderivative by means of area: log x is the area
under 1/x between 1 and x. We also sec in this concrete case how
dA(x)/dx = f(x), where A(x) is the area. This is then done again in full
generality when studying the, integral. Furthermore, mequahues involving
lower sumd and upper sums, having already been used in this concrete
case, become more easily ‘understandable in the general case. Classes
which start the terr? on integration _without having gone through the

3 .
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part on differentiation might well start with the last section of the
chapter on logarithms, i.e. the last section of Chapter VIIL

Taylor’s formula is proved with the integral form of the remainder,
which is then properly estimated. The proof with integration by parts is
more natural than the other (differentiating some complicated expression
pulled out of nowhere), and is the one which generalizes to the higher
dimensional case. 1 have placed integration after differentiation, because
otherwise one has no technique available to evaluate integrals.

I personally think that the computations which arise naturally from
Taylors formula (computations of values of elementary functions, com-
putation of e, m, log 2, computations of definite integrals to a few deci-
mals, traditionally slighted in calculus courses) are important. This was
clear already many years ago, and is even clearer today in the light of
the pocket computer proliferation. Designs of such computers rely pre-
cisely on effective means of computation by means of the Taylor poly-
nomials. Learning how to estimate effectively the remainder term in
Taylor’s formula gives a very good feeling for the elementary functions,
not obtainable otherwise.

The computation of integrals like

)
v o1
f e * dx or J e " dx
0 [+]

which can easily be carried out numerically, without the use of a simple
form for the indefinite integral, should also be emphasized. Again it
gives a good feeling for an aspect of the integral not obtainable other-
wise. Many texts slight these applications in favor of expanded treatment
of applications of integration to various engineering situations, like fiuid
pressure on a dam, mainly by historical accident. I have nothing against
fluid pressure, but one should keep in mind that too much time- spent on
some topics prevents adequate time being spent on others. For instance,
Ron Infante tells me that numerical computations of integrals like

! sin x
—dx,
0o X

which .we carry out in Chapter XIII, occur frequently in the study of
communication networks, in connection with square waves. Each in-
structor has to exercise some judgment as to what should be emphasized
at the expense of something else.

The chapters on functions of several variables are included for classes
which can proceed at a faster rate, and therefore have time for additional
material during the first year. Under ordinary circumstances, these
chapters will not be covered during a first-year course. For instance, they
are not covered during the first-year course at Yale.
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Indacton. I think the first course in calculus is a good time to learn
induction. However, an attempt to teach induction without having met
natural examples first meects with very great psychological difficulties.
Hence throughout the part on differentiation, I have not mentioned in-
duction formally. Whenever a situation arises where induction may be
used, I carry out stepwise procedures illustrating the inductive procedure.
After enough repetitions of these, the student is then ready to see a
“pattern which can be summarized by the formal “induction,” which just
becomes a name given to a notion which has already been understoed.

Review material. The present edition also emphasizes more review .
material. Deficient high school training is responsible for many of the
difficulties experienced at the college level. These difficulties are not so
much due to the problem of understanding calculus as to the inability to
handle elementary algebra. A large group of students cannot automati-
cally give the expansion for expressions like

’ (a'+ b>, (a-b)% or (a+b¥a-b).

The answers should be memorized like the multiplication table. To
memorize by rote such basic formulas is not incompatible with learning
general principles. It is complementary.

To avoid any misunderstandings, I wish to state explicitly that the
poot preparation of so many high school students cannot be attributed
to the “new math” versus the “old math.” When I started teaching
calculus as a graduate student in 1950, I found the quasi-totality of
college freshmen badly prepared. Today, I find only a substantial
number of them (it is hard to measure how many). On the other hand,
a sizable group at the top has had the opportunity to learn some
calculus, even as much as one year, which would have been inconceiv-
able in former times. As bad as the situation is, it is nevertheless an
improvement.

I wish to thank my colleagues at Yale and others in the past who
have suggested improvements in the book: Edward Bierstone (University
of Toronto), Folke Eriksson (University of Gothenburg), R. W. Gatter-
dam (University of Wisconsin, Parkside), and George Metakides (Univer-
sity of Rochester). 1 thank Ron Infante for assisting with the
proofreading.

I am also much indebted to Anthony Petrello for checking worked-
out examples and answers in past editions.

S. Lang



Part One

Review of
Basic Material

If you are already at ease with the elementary properties of numbers and
if you know about coordinates and the graphs of the standard equations
(linear equations, parabolas, ellipses), then you should start immediately
with Chapter III on derivatives.






CHAPTER |

Numbers and Functions

In starting the study of any sort of mathematics, we cannot prove every-
thing. Every time that we introduce a new concept, we must define it in
terms of a concept whose meaning is already known to us, and it is
impossible to keep going backwards defining forever. Thus we must
choose our starting place, what we assume to be known, and what we
are willing to explain and prove in terms of these assumptions.

. At the beginning of this chapter, we shall describe most of the things
which we assume known for this course. Actually, this involves very
little. Roughly speaking, we assume that you know about numbers, addi-
tion, subtraction, multiplication, and division (by numbers other than 0).
We shall recall the properties of inequalities (when a number is greater
than another). On a few occasions we shall take for granted certain
properties of numbers which might not have occurred to_you before and
which will always be made precise. Proofs of these properties will be
supplied in the Appendix for those of you who are interested.

a

I, §1. INTEGERS, RATIONAL NUMBERS, AND
REAL NUMBERS

The most common numbers are the numbers 1, 2, 3,... which are called
positive integers.

The numbers —1, —2, —3,... are called negative integers. When we
want to speak of the positive integers together with the negative integers
and O, we call them simply integers. Thus the integers are 0, 1, —1, 2,
-2,3, -3,....

The sum and product of two integers are again integers.
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In addition to the integers we have fractions, like 2, %, —4, —3%,
#%...., which may be positive or negative, and which can be written as
quotients m/n, where m, n are integers and n is not equal to 0. Such
fractions are called rational numbers. Every integer m is a rational
‘number, because it can be written as m/1, but of course it is not true
that every rational number is an integer. We observe that the sum and
product of two rational numbers are again rational numbers. If a/b and
m/n are two rational numbers (a, b, m, n being integers and b, n unequal
to 0), then their sum and product are given by the following formulas,
which you know from elementary school: .

am_anm

bn bn
a+in__an+bm
b n bn

In this second formula, we have simply put the two fractions over the
common denominator bn.

We can represent the integers and rational numbers geometrically on
a straight line. We first select a unit length. The integers are multiples
of this unit, and the rational numbers are fractional parts of this unit.
We fave drawn a few rational numbers on the line below.

o - & e y
\J Lf T —

-2 -1-§ o} 1} 3

ks

Observe that the negative integers and rational numbers occur to the left
of zero.

Finally, we have the numbers which can be represented by infinite
decimals, like /2 = 1414... or 7 = 3.14159..., and which will be called
real numbers or simply nambers.

The integers and rational numbers are special cases of these infinite
decimals. For instance,

3 = 3.000000...,
and

3 = 0.7500000...,

4 =03333333....

We see that there may be several ways of denoting the same number, for
instance as the fraction 4 or as the infinite decimal 0.33333.... We have
written the decimals with dots at the end. If we stop the decimal expan-
sion at any given place, we obtain an approximation to the number. The
further off we stop the decimal, the better approximation we obtain.
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Finding the decimal expansion for a fraction is easy by the process of
long division which you should know from high school.

Later in the course we shall learn how to find decimal expansions for
other numbers which you may have heard about, like =. You were prob-
ably told that n = 3.14 ... but were not told why. You will learn how to
compute arbitrarily many decimals for = in Chapter XIII.

Geometrically, the numbers are represented as the collection of all
" points on the above straight line, not only those which are a rational
part of the unit length or a multiple of it.

We note that the sum and product of two numbers are numbers. If a
is a number unequal to zero, then there is a unique number b such that
ab = ba = 1, and we write

b= or b=al.

Q-

We say that b is the inverse of g, or “a inverse.” We emphasize that the
expression

10 or 07! is not defined.

In other words, we cannot divide by zero, and we do not attribute any
meaning to the symbols 1/0 or 071,

However, if a is a number, then the prodct 0-a is defined and is equal
to 0. The product of any number and O is 0. Furthermore, if b is any
number unequal to 0, then 0/b is defined and equal to 0. It can also be
written 0-(1/b). ‘

If a is a rational number # 0, then 1/a is also a rational number.
Indeed, if we can write a = m/n, with integers m, n both different from 0,
then

8 |-
3=

is also a rational number.

I, §2. INEQUALITIES

Aside from addition, multiplication, subtraction, and division (by
numbers other than 0), we shall now discuss another important feature
of the real numbers.

We have the positive numbers, represented geometrically on the
straight line by those numbershvnequal to 0 and lying to the right of 0.
If a is a positive number, we write a > 0. You have no doubt already
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worked with positive numbers, and with inequalities. The next two pro-
perties are the most basic ones, concerning positivity.

POS 1. If a, b are positive, so is the product ab and the sum a + b.

POS 2. If a is a number, then either a is positive, or a =0, or —~a is
positive, and these possibilities are mutually exclusive.

If a number is not positive and not O, then we say that this number is
negative. By POS 2, if a is negative, then —a is positive.

Although you know already that the number 1 is positive, it can in
fact be proved from our two properties. It may interest you to see the
proof, which runs as follows and is very simple. By POS 2, we know
that either 1 or —1 is positive. If ! is not positive, then —1 is positive.
By POS 1, it must then follow that (—1)—1) is positive. But this pro-
duct is equal to 1. Consequently, it must be 1 which is positive, and not
—1. Using property POS 1, we could now conclude that 1 + 1 =2 is
positive, that 2 + 1 = 3 is positive, and so forth.

If a > 0, we shall say that a is greater than 0. If we wish to say that a
is positive or equal to 0, we write

az20

and read this “aq greater than or equal to zero.”

Given two numbers a, b we shall say that g is greater than b and
write a > b if a — b > 0. We write a < 0 (a is less than 0) if —a > 0 and
a<bif b>a. Thus 3 > 2 because 3 —2>0.

We shall write a 2 b when we want to say that g is greater than or
equal to b. Thus 3 22 and 3 2 3 are both true inequalities.

Other rules concerning inequalities are valid.

In what follows, let @, b, ¢ be numbers.

Rule 1. If a>b and b > c, then a > c.
Rule 2. If a> b and ¢ > 0, then ac > be.
Rule 3. If a> b and ¢ <0, then ac < be.

Rule 2 expresses the fact that an inequality which is multiplied by a
positive number is preserved. Ruie 3 tells us that if we multiply both
sides of an inequality by a negative number, then the inequality gets
reversed. For instance, we have the inequality

1<3

Since 2> 0 we also have 2-1 <2-3. But —2 is negative, and if we
multiply both sides by —2 we get

—2> —6.
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In the geometric representation of the real numbers on the line, —2 lies
to the right of —6. This gives us the geometric representation of the fact
that —2 is greater than —6.

If you wish, you may assume these three rules just as you assume
POS 1 and POS 2. All of these are used in practice. It turns out that
the three rules can be proved in terms of POS 1 and POS 2. We can-
not assume all the inequalitics which you will ever meet in practice.
Hence just to show you some techniques which might recur for other
applications, we show how we can deduce the threc rules from POS 1
and POS 2. You may omit these (short) proofs if you wish.

To prove Rule 1, suppose that a > b and b >c. By definition, this
means that (a — b) > 0 and (b — ¢) > 0. Using property POS 1, we con-
clude that

a—-b4+b-c>0,

“and canceling b gives us (a — ¢) > 0. By definition, this means a > c, as

was to be shown.
To prove Rule 2, suppose that ¢ > b and ¢ > 0. By definition,

a—-b>0.

Hence using the property of POS 1 concerning the product of positive
numbers, we conclude that

(a—b)x>0.

The left-hand side of this inequality is none other than ac — bc, which is-
therefore > 0. Again by definition, this gives us

ac > be.

We leave the proof of Rule 3 as an exercise.
We give an example showing how to use the three rules.

Example. Let q, b, c, d be numbers with ¢, d > 0. Suppose that

SR
A
[N

We wish fo prove the “cross-multiplication™ rule that

ad < bc.
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Using Rule 2, multiplying each side of the original inequality by ¢, we
obtain

a < be/d.

Using Rule 2 again, and multiplying each side by d, we obtain
ad < be,

as desired.

Let a be a number > 0. Then there exists a number whose square is
a. If b* = a then we observe that

(—b)* = b?

is also to a. Thus either b or —b is positive. We agree to denote by \,G
the positive square root and call it simply the square root of a. Thus ﬂ
is equal to 2 and not —2, even though (—2)? = 4. This is the most
practical convention about the use of the f sign that we can make. Of
course, the square root of 0 is O itself. A negative number does not have
a square root in the real numbers.

There are thus two solutions to an equation

xX“=aq

with a > 0. These two solutions are x = ﬁ and x = —ﬁ. For in-
stance, the equation x? = 3 has the two solutions

x=/3=1732... and x=-3=-1732....

The equation x? =0 has exactly one solution, namely x =0. The
equation x? = a with a < 0 has no solution in the real numbers.

Definition. Let a be a number. We define the absolute value of a to
be

la] = /a2,

In particular,

la]? = a2




