Making
Software
Engineering
Happen

A Guide for Instituting
the Technology

Roger S. Pressman, Ph.D.

Making
Software
Engineering
Happen

A Guide for Instituting
the Technology

Roger S. Pressman, Ph.D.

President, R.S. Pressman & Associates, Inc.

Adjunct Professor of Computer Engineering
University of Bridgeport

Prentice Hall, Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging-in-Publication Data

PrESSMAN, ROGER S. Making software engineering happen.

Bibliography.

Includes index.

1. Computer software—Development. 1. Title.
QA76.76.D47P74 1988 005.1 87-17438

ISBN 0-13-547738-7

Cover design: Roger S. Pressman
Manufacturing buyer: Paula Benevento

© 1988 by Roger S. Pressman

All rights reserved. No part of this book may be -
reproduced. in any form or by any meaﬁs}.. :
without permisison in writing from the publisher.

Printed in the United States of America

109 8 76 5 43 21

ISBN 0-13-547738-7 025

PreENTICE-HALL INTERNATIONAL (UK) LimiteDp, London
PRENTICE-HALL OF AUSTRALIA Pry. LIMITED, Sydney
PrenTICE-HALL CANADA INC., Toronto

PRENTICE-HALL HISPANOAMERICANA, S.A., Mexico
PRENTICE-HALL OF INDIA PRIVATE LiMiTED, New Delhi
PRENTICE-HALL OF JAPAN, INcC., Tokyo

SiMON & ScHUSTER Asia PTE. L., Singapore

EpITorA PrENTICE-HALL DO BRASIL, LTDA., Rio de Janeiro

%

PREFACE

Today, managers in companies of every kind recognize that computer
software is an essential part of their business. Software provides
information for business decision making, it provides data that enable
engineers and scientists to effectively apply technology, it becomes the
differentiating characteristic in products and systems of every descrip-
tion. But these beneficial traits are often outweighed by something
else: software remains a bottleneck. We continue to build computer
programs for the 1990s using development approaches that have
remained virtually unchanged since the 1970s. Something has to be
done.

There is no simple solution to a "software crisis" that has been
brewing for thirty years. But one thing is clear: software can be devel-
oped more productively with significantly higher quality when a disci-
plined approach is taken—an approach called software engineering.

Software engineering encompasses procedures, methods and
tools for the analysis, design, implementation and testing of computer
software. First introduced in the early 1970s, software engineering
has evolved into a multi-disciplinary field that encompasses elements
of computer science, management science and pragmatic engineering.
Although few people disagree with software engineering philosophy,
it has not been adopted as widely as one might like. The problem is
making it happen! -

Software engineering represents a significant departure from the
art form that we call "computer programming.” Although the objec-
tives of software engineering and programming are the same, it is the
difference in approach that creates problems. Software engineering
requires a software development organization to undergo technology
transition. This leads to changes—changes in procedures, changes in

xi

xii PREFACE

the way people perceive their work and the manner in which their
work is measured, changes in the methods and tools that are used to
build the products and systems that lead to successful software.
Unfortunately, changes are never easy!

For the past ten years I have had the opportunity to help a number
of large companies implement software engineering practices. The job
is difficult and rarely goes as smoothly as one might like—but when it
succeeds, the results are profound. Software projects are more likely
to be completed on time. Communication between all constituencies
involved in software development is improved. The leve!l of confusion
and chaos that is often prevalent for large software projects is reduced
substantially. The number of errors encountered by the customer
drops. The credibility of the "software organization" increases. And
management has one less problem to worry about.

But everything is not sweetness and light. Many companies
attempt to implement software engineering practice and give up in
frustration. Others do it half way and never see the benefits noted
above. Still others take a heavy handed approach that results in open
rebellion among technical staff and managers and subsequent loss of
morale.

Making Software Engineering Happen has been written to help
managers who recognize the need for a more disciplined approach to
software development, but don't really know how to start the transi-
tion to software engineering. The book has been written because too
many companies go about software engineering implementation in the
wrong way, using the wrong people, who focus on the wrong
problems.

Making Software Engineering Happen is not intended to be a
comprehensive tutorial on software engineering. Many good text-
books already exist to fill this need. Rather, the book has been de-
signed as a manager's guide that will enable you to put software engi-
neering into place—to supplement your own base of experience and
provide a road map for those who have not managed the implementa-
tion of software engineering methodology or have not yet completed
the job.

Early chapters of the book present an overview of software engi-
neering (Chapter 1) and examine software engineering implementation
and the impact of cultural change that results as a consequence of this
new technology (Chapter 2). Chapter 3 introduces a "life cycle” for

PREFACE xiii
the implementation of software engineering and CASE—that is, the
steps required to make software engineering happen. The model de-
fines strategies for assessment, education, technology selection, in-
stallation and evaluation.

Chapters 4 through 8 describe each step in the software
engineering implementation life cycle in detail. Among the many top-
ics presented are qualitative and quantitative assessment, education
strategies, methods and tools selection checklists, and guidelines for
methodology installation and evaluation. These chapters are supple-
mented with a number of appendices. Appendix B is of particular im-
portance because it presents "quasi-expert system" guidance for con-
ducting a Software Engineering Audit —a procedure that enables you
to assess the current state of software development practice within
your organization.

Chapter 9 recommends a strategy for software engineering imple-
mentation. A work breakdown structure defines all steps in the strate-
gy, a typical implementation schedule is established, and important
management issues are discussed.

It would be dishonest to say that the approach described in this
book is fool proof. Dedicated people, not books, make software engi-
neering happen. But the activitics, guidelines, suggestions and ap-
proach described within these pages can be useful to managers and
others who are chartered with the responsibility for making software
engineering become a reality in their organizations.

The ideas contained in this book have evolved from many sourc-
es: an off-the-cuff remark by a client during a meeting; a criticism
from a student in a classroom; a comment in a letter from a colleague;
an article in a trade journal; an insight in a textbook. All of these
sources have contributed to Making Software Engineering Happen.
Most important, however, have been the many months spent with in-
dustry clients attempting to solve real-life problems associated with
software engineering implementation.

Many of the ideas presented in these pages first appeared in a
consultant's guide which I developed for Ermst & Whinney. My heart-
felt thanks to Clint Alston and his colleagues at Ernst & Whinney for
providing me with the incentive to "put it into writing" and allowing

me to reuse important segments of their consultant's guide in this
book.

Roger S. Pressman

CONTENTS

PREFACE ... xi
1 INTRODUCTION ... 1

1.1 Technology Implementation ... 3
1.2 An Overview of Software Engineering ... 3
1.2.1 Software Engineering—A Generic View ... 4
1.2.2 Software Engineering Paradigms ... 5
1.2.3 The Classic Life Cycle ... §
1.2.4 Prototyping ... 7
1.2.5 Fourth Generation Techniques ... 9
1.2.6 Combining Paradigms ... 10
1.3 Computer-Aided Software Engineering (CASE) ... 11
1.4 Software Quality Assurance and Software
Configuration Management ... 12 |
1.5 Organizing for Software Engtheering ... 13
1.5.1 The Software Engineering Project Team ...14
1.5.2 Lines of Communication ... 15
1.6 Summary ... 16

2 THE CHALLENGE OF TECHNOLOGICAL CHANGE ... 19

2.1 The Challenge of Cultural Change ... 20

2.2 People and Change ... 22

2.3 Getting Staff Commitment ... 25 .
2.4 Understanding Customer/User Concerns ... 26
2.5 Getting the Message Across ... 27

2.6 Selecting a "Local Champion” ... 30

2.7 Summary ... 31

vii

viii CONTENTS

3 SOFTWARE ENGINEERING IMPLEMENTATION
LIFE CYCLE ... 33

3.1 The Implementation Life Cycle ... 34
3.1.1 The Assessment Step ... 34
3.1.2 The Education Step ... 35
3.1.3 The Selection Step ... 37
3.1.4 The Installation Step ... 38
3.1.5 The Evaluation Step ... 39
3.2 Implementation Process Flow ... 41
3.3 Factors that Affect the Life Cycle ... 42
3.4 Summary .. 43

4 ASSESSMENT ... 45

4.1 The Software Engineering Audit ... 46
4.1.1 Subject Areas Covered in the Audit ...46
4.1.2 Who Conducts the Audit? ... 47
4.2 Qualitative Assessment ... 48
4.3 Quantitative Assessment ... 52
4.3.1 Line of Code Measures ... 53
4.3.2 Function Point Measures ...53
4.3.3 Guidelines for Quantitative Assessment ... 54
4.3.4 Reporting Quantitative Findings ...56
4.4 The Assessment Report ... 57
4.4.1 Guidelines for Preparation ... 60
4.4.2 Format and Content ... 61
4.4.3 Presenting Your Findings to Management ... 63
4.5 The Transition Plan ... 65
4.5.1 Guidelines for Preparation ... 66
4.5.2 Format and Content ... 66
4.6 Summary ...69

5 EDUCATION .. 71

5.1 Understanding Educational Needs ... 72
5.1.1 Generic Methods and Concepts ... 72
5.1.2 Tools ... 74
5.1.3 General Business Practice ... 75
5.2 Establishing a Training Strategy ... 75
5.3 Guidelines for Short Courses and Seminars ... 76
Software Engineering: A Business Perspective ... 78
Management Course in Software Engineering ... 79
Software Engineering Methodology Course ... 80
5.4 Sources of Supplementary Courseware ... 81
5.4.1 Supplementary Literature ... 81

5.4.2 Supplementary Courseware ... 82
5.5 Summary ... 83

6 SELECTION .. 85

6.1 The Selection Process ... 86
6.2 Generic Guidelines for Selection ... 88
6.3 Productivity and Quality Issues ... 90
6.4 Selection Criteria ... 90

6.4.1 Procedures ... 91

6.4.2 Methods ... 93

6.4.3 Tools ... 94
6.5 A CASE Tools Checklist ... 96
6.6 Justification ... 99

6.6.1 A Simple Justification Model ... 100

6.6.2 Intangibles that Affect Justification ... 102

6.7 Justifying CASE ... 102
6.8 Summary ... 104

7 INSTALLATION ... 105

7.1 Technology Transition ... 106

7.2 Transition Problems ... 107
7.2.1 Education Problems ... 108
7.2.2 Tools Problems ... 108
7.2.3 Methods Problems ... 110
7.2.4 Procedural Problems ... 110

CONTENTS

7.3 Instituting Software Engineering Procedures and Methods ... 111 .

7.3.1 Project Tracking and Control ... 112

7.3.2 Analysis Procedures and Methods ... 113

7.3.3 Preliminary and Detail Design ... 114
7.3.4 Code Generation ... 116
7.3.5 Testing ... 117

7.3.6 Documentation and Deliverables ... 119
7.3.7 Software Configuration Management ... 121
7.4 Installing Software Engineering Tools ... 122

7.4.1 TInstalling Coding Tools ... 123
7.4.2 Installing CASE Tools ... 125

7.4.3 Installing Desk-Top Publishing ... 127
7.5 Software Quality Assurance Procedures ... 129
7.6 Developing Standards and Procedures ... 130

7.7 How to Get Started ... 133
7.7.1 Evaluating a Pilot Project ... 136

7.7.2 Propagating Software Engineering to Other Projects ...

7.8 Summary ... 137

137

ix

X CONTENTS

8 EVALUATION ... 139

8.1 Measuring the Success of Installation ... 140
8.2 Measuring Productivity and Quality ... 140
8.3 Tuning the Approach ... 141

8.4 Justification for Management ... 143

8.5 Summary ... 144

9 ANIMPLEMENTAT!ON STRATEGY ... 145

9.1 A Work Breakdown Structure ... 146
9.1.1 Preliminaries ... 146
9.1.2 Assessment Tasks ... 147
9.1.3 Education Tasks ... 150
9.1.4 Selection Tasks ... 152
9.1.5 Installation and E saluation Tasks ... 154

9.2 A Schedule for Softw:ire Engineering Implementation ...

9.2.1 Task Sequences ar d Interdependencies ... 158
9.2.2 Phased Implemen-ation ... 165

9.3 Strategic Issues ... 16

9.4 Summary ... 168

EPILOGUE ... 169
APPENDICES

A Self-Assessment fo- Software Engineer:ng Practice ..

B Software Engineering Audit ... 187
B.1 Software Engineerig Audit Questionnire ... 189

157

.1

B.2 Audit Comments, Inferences, and Follow-up Questions ... 197
C Spreadsheet Model for Assessnient and Evaluation .., 227

D An Annotated Outline for the Transition Plan ... 233
E Software Engineering Bibliography ... 239

INDEX ... 253

1

INTRODUCTION

Software and software based systems are important to your business.
Whether software is embodied as an information system for manage-
ment decision making, a support system for manufacturing, or an
embedded element of a computer-based product, it serves to distin-
guish one company from another.

Today, software development technology is undergoing change.
Companies that could once develop computer-based systems using an
informal approach find that a more disciplined and controlled metho-
dology is essential to meet budgeted costs, maintain required
schedules, and achieve desired quality. People who once developed
programs with little more than a programming language compiler are
now using a suite of automated tools that span all important tasks in
software development. But why is all this change necessary?

The answer to the above question is pivotal to an understanding
of the challenges that face any company that attempts to change the

1

2 MAKING SOFTWARE ENGINEERING HAPPEN

manuer in which software is developed. Techniques that were applied
successfully in the 1960s, 1970s, and in some cases, the 1980s, do
not work today because:

1. software has become larger and much more complex for
applications of all kinds;

2. the success or failure of a software development project often has a
traceable impact on the bottom line;

3. customers demand more rapid response to their needs—the busi-
ness climate requires fast reaction;

4. computer-based systems demand interdisciplinary skills—that is,
as systems have grown, software people must interact with many
other constituencies;

5. good technical people—the most important software development
resource—are a scarce and expensive commodity; and

6. senior management is more aware of software and is less likely to
be "snowed" by excuses and jargon that were often voiced during the
early days of computing.

A discipline called software engineering has been adopted by
many companies as a response to the changing systems environment.
Software engineering encompasses a variety of technical methods, a
set of management procedures, and a suite of automated tools (often
called CASE~—computer-aided software engineering) that enhance our
ability to build effective computer-based systems. The collection of
methods, procedures and tools that comprise software engineering
represent a fundamental departure from the "old ways." The ad hoc
style of the past must give way to a more controlled approach.

Companies with a long established software development culture
often find it difficult to adopt new methods, tools, and procedures.
Yet, management at these companies recognizes that the old culture is
ineffective and in some cases detrimental to the overall strategic
objectives.

When viewed from the inside, the need for modern software
engineering practice puts many managers in a quandary. The current
approach gets the job done, but costs are unpredictable, schedules
tend to slip, and overall quality is sometimes less than adequate. Yet,
the current approach to building systems (with all of its failings) is
reasonably well accepted by middle managers and technical practition-
ers alike. When new methods, procedures and CASE tools are

INTRODUCTION 3

suggested, old ways are threatened, job functions may change, and
new things must be learned—the boat has been rocked. Proposed
changes may be resisted by the very people who could benefit the
most from them. To institute software engineering practice, a manag-
er must be willing to institute change— and change is never easy.

1.1 TECHNOLOGY IMPLEMENTATION

As we begin our discussion of software engineering implementation,
it is important to understand that in the context of this book, the term
implementation refers not to the creation of systems or software, but
to the cultivation of a new technology (software engineering) within a
human organization. The remaining chapters of this book consider
many aspects of implementation. For now, we consider its most
general attributes:

Technology assessment. Before later stages of implementation can
commence, it is necessary to assess the current state of software/
system development practice. Problem areas and strengths are isoiat-
ed; recommendations for change are made, and a Transition Plan is
developed.

Technology transfer. Once the software development organization has
been assessed and a plan of action defined, a set of activities that sup-
port methodology installation should be conducted. These activities
include education of both management and technical staff, selection
and installation of appropriate methods and tools, and definition of
evaluation criteria.

Technology evaluation. Implementation does not end with the transfer
of software engineering technology. Rather, the application of the
technology is evaluated (both qualitatively and quantitatively). Proce-
dures, methods and tools are then tuned to optimize their application.

L2 AN OVERVIEW OF SOFTWARE
ENGINEERING

Software engineering is a software development discipline that can be

applied to applications of all kinds. The discipline encompasses three
major elements:

1. Procedures for planning, controlling, tracking and assuring
technical activities during software development ;

4 MAKING SOFTWARE ENGINEERING HAPPEN_

2. Methods that are applied by technical staff during the analysis,
design, implementation, testing and maintenance of software;

3. Tools that create a hardware and software support environment
that complements software engineering methods and procedures.

Pressman* provides a concise description of the interrelationship of
these elements:

Software engineering methods provide the technical "how to's" for build-
ing software. Methods encompass a broad array of tasks that include: project
planning and estimation, system and software requirements analysis, design
of data structure, program architecture and algorithm procedure, coding, test-
ing and maintenance. Methods for software engineering often introduce a
special language-oriented or graphical notation and introduce a set of criteria
for software quality.

Software engineerjng tools provide automated or semi-automated
support for methods. Today, tools exist to support each of the methods noted
above. When tools are integrated so that information created by one tool can
be used by another, a system for the support of software development, called
computer-aided software engineering (CASE), is established. CASE com-
bines software and hardware to create a software engineering environment that
is analogous to CAD/CAE (computer aided design/engineering) for hardware,

Software engineering procedures are the glue that holds the methods and
tools together and enables rational and timely development of computer soft-
ware. Procedures define the sequence in which methods [and tools] will be
applied, the deliverables (documents, reports, forms, etc.) that are required,
the controls that help assure quality and coordinate change, and the mile-
stones that enable software managers to assess progress.

A specific characterization of software engineering—at both philo-
sophical and pragmatic levels—will vary among companies and
application areas. However, the three elements noted above will
always be present.

1.2.1 Software Engineering—A Generic View

Software engineering can be characterized in a number of different
ways. When the chronology of the software devélopmént process is
examined, software engineering flows through three generic phases:
definition, development and maintenance: The phases are often mod:
eled using one or more paradigms that describe the individual steps

* Pressman, R.S., Software Engineering: A Practitioner’s-Approach, second
edition, McGraw-Hill, 1987. .

INTRODUCTION 5

associated with each phase. When the pragmatic elements of software
engineering are considered, the discipline may be viewed as a set of
procedures, methods and tools. Finally, when the end-product
(working, maintainable software) is the focus, software engineering
may be viewed as a set of deliverables that encompass documents,
programs and data In actuality, each of these views overlaps the
others.

1.2.2 Software Engineering Paradigms

A number of different procedural approaches, called paradigms, to
software engineering have been proposed over the past decade. A
paradigm describes the manner in which procedures are characterized,
methods are applied, and tools are used. A manager with responsibili-
ty for making software engineering happen should never become dog-
matic about his or her "favorite” paradigm. That is, the appropriate
paradigm for the application of software engineering should be based
on the characteristics of the computer-based system to be developed or
maintained, the background and knowledge of developers and
customers, and available software development resources.

1.2.3 The Classic Life Cycle

Figure 1.1 illustrates the classic life cycle paradigm for software eng1-
neering. Sometimes called the "waterfall model," this paradigm
describes the process of software development as a series of sequen-
tial steps in which information developed in one step is built upon to
create information for the next step. The following activities occur
during the life cycle paradigm:

Planning. - The business requxrements that have created a need for
new or modified software are examined. Top level customer require-
ments are identified, functional and system interfaces are defined and
the relation of this software to overall business function is established.

In many application areas, this step is expanded to include. system
engineering as it relates to computer software.

Analysis. Detailed requirements necessary to define the function and
performance of the software are defined. In addition, the information
domain for the system is analyzed to identify data flow characteristics,
key data objects and overall data structure.

6 MAKING SOFTWARE ENGINEERING HAPPEN

K 2

analysis

planning

K 2

testing

maintenance

Figure 1.1 The Classic Life Cycle

Design. Detailed requirements are translated into a series of system
representations that depict how the software will be constructed. The
design encompasses a description of program structure, data structure
and, at lower levels, detailed procedural descriptions of the software.
Code. Design must be translated into a machine executable form. The
coding step accomplishes this translatiori through the use of conven-
tional programming languages (e.g., C, Ada, Pascal) or so-called
fourth generation languages (e.g., NOMAD, INTELLECT).

Testing. Testing is a multi-step activity that serves to verify that each
software component properly performs its required function and vali-
dates that the system as a whole meets overall customer requirements.
Maintenance. Maintenance is actually the re-application of each of the
preceding activities for existing software. The re-application may be
required to correct an error in the original software, to adapt the soft-
ware to changes in its external environment (e.g., new hardware,
operating system, etc.), or to provide enhancement to function or
performance requested by the customer.

The classic life cycle paradigm is the most widely used approach
to software engineering. It leads to systematic, rational software
development, but like any generic model, the life cycle paradigm can
be problematic for the following reasons:

1. The rigid sequential flow of the model is rarely encountered in

INTRODUCTION 7

real hife. Iteration can, and does, occur, causing the sequence of steps
to become muddled.

2. Itis often difficult for the customer to provide a detailed specifica-
tion of what is required early in the process. Yet, this model requires a
definite specification as a necessary building block for subsequent
steps.

3. Much time can pass before any operational elements of the system
are available for customer evaluation. If a major error in implementa-
tion is made, it may not be uncovered until much time has passed.

Do these potential problems mean that the life cycle paradigm should
be avoided? Absolutely not! They do mean, however, that the appli-
cation of this software engineering paradigm must be carefully man-
aged to ensure successful results.

1.2.4 Prototyping

Prototyping is a software engineering paradigm that has been pro-
posed to circumvent some of the problems that are inherent in ihe
classic life cycle. Illustrated schematically in Figure 1.2, prototyping
is 2 modeling process that moves the developer and customer toward a

~
requirements
gathering

3 “quick

design”

build

prototype

evaluate
and refine #

requirements,
engineer
" product

)

 I—

Figure 1.2 Prototyping

