

Ithaca, New York

June 22-25. 1987

Sponsored by the Computer Society of the IEEE

Technical Committee on

Mathematical Foundations of Computing

Computer Society Order Number 793
Library of Congress Number 87-45360
IEEE Catalog Number 87CH2464-6
.ISBN 0-8186-0793-9

SAN 264-620X

THE COMPUTER SOCIETY
OF THE IEEE

In cooperation with:
) ACM SIGACT
Association for Symbolic Logic
European Association for Theoretical
Computer Science

Support provided by:
Odyssey Research Associates
Corneli Mathematical Sciences Institute

Local arrangements supported by:
Cornedl University

@ COMPUTER
SOCIETY

IEEE THE INSTITUTE OF ELECTRICAL AND ELECTABNICS ENGINEERS, INC. PRESS

The papers appearing in this book comprise the proceedings of the meeting mentioned on the
cover and litle page. They reflect the authors’ opinions and gre published as presented and
without change. in the interests of timely dissemination. Their inclusion in this publication does not
necessarily constitute endorsement by the editors, Computer Society Press of the IEEE, or The
institute of Electrical and Electronics Engineers, Inc.

Published by Computer Society Press of the IEEE
1730 Massachusetts Avenue, N.W.
Washington, D.C. 20036-1903

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are
permitted to photocopy beyond the limits of U.S. copyright law for private use of patrons those
articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee
indicated in the code is paid through the Copyright Clearance Center, 29 Congress Street, Salem,
MA 01970. Instructors are permitted to photocopy isolated articles for noncommercial classroom
use without fee. For other copying, reprint or republication permission, write to Director, Publishing
Services, IEEE, 345 E. 47th St., New York, NY 10017. All rights reserved. Copyright 1987 by The
Institute of Electrical and Electronics Engineers, Inc.

Computer Society Order Number 793
Library of Congress Numoer v -7as60
IEEE Catalog Number 87GHP4IK R

" 1ISBN 0-8186- 0793 9 (papera=
ISBN 0-8186-4793-0 (microfichiel
ISBN 0-8186-8793-2 (case)
SAN 264-620X

Order from: Computer Society of the IEEE IEEE Service Center Computer Society of the IEEE
Post Office Box 80452 445 Hoes Lane Avenue de la Tanche, 2
Worldway Postal Center P.O. Box 1331 B-1160 Brussels

Los Angeles, CA 90080 Piscataway, NJ 08855-1331 BELGIUM

Q THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC.
eee

FOREWORD

The purpose of this second annual conference on Logic in Computer Science (LICS) is
to bring together a wide range of issues in computer science broadly relating to logic,
including algebraic and topological approaches. The LICS conferences evolved from
the Logics of Programs workshops and have a substantially broader scope. The call
for papers for this second annual LICS symposium included the following topics of
interest: abstract data types, computer theorem proving, verification, concurrency,
type theory and constructive mathematics, constructive proofs as programs, data base
theory, foundations of logic programming, program logics and semantics, knowledge
and belief, software specifications, logic-based programming languages, logic in com-
plexity theory.

Organizing Committee:

K. Jon Barwise
Woodrow W. Bledsoe
Ashok K. Chandra (Chair)
Edsger W. Dijkstra
Erwin Engleler
Joseph A. Goguen
Dexter C. Kozen

_ Zohar Manna

. Albert R. Meyer

- Rohit Parikh
Gordon D. Plotkin
Dana S. Scott

il

CONFERENCE PROGRAM

The thirty-four papers in these Proceedings were selected by the Program Committee
on January 18, 1987, from 126 extended abstracts submitted in response to the call
for papers. A lar'o number of worthy abstracts had to be rejected because of size limi-
tations. The program comzmttee wishes to thank all who submitted papers for con-
sideration.

Neither the extended abstracts submitted to the Program Committee nor the final
papers in these Proceedings went through a formal refereeing process. Selections
were based on several criteria, including quality and originality, but also including
presentability, appropriateness, and completeness. Many of the papers are prelim-
inary reports of on-going research, and it is expected that many authors will publish
more polished and complete versions in scientific journals.

Program Committee:

Stephen Brookes
Luca Cardelli
Robert Constable
Melvin Fitting
Joseph A. Goguen
David Gries (Chair)
Yuri Gurevich
David Harel
Jean-Pierre Jouannaud
Richard E. Ladner
Vladimir Lifschitz
Giuseppe Longo
Anil Nerode
Gordon Plotkin
Amir Pnueli

Philip Scott

CONFERENCE ORGANIZATION

Conference Chair

Ashok K. Chandra
IBM T.J. Watson Research Center

Program Chair

David Gries

Cornell University

Local Arrangements Chair

Dexter Kozen
Cornell University

Publicity Chair

David W. Bray
Clarkson University

vii

Table of Contents

Foreword

Conference Program

Conference Organization

Monday, June 22, 1987

Invited Speaker
(Chair: A Pnueli, Weizmann Institute of Science)

Some Uses of Maximal Fixed Points (abstract). 3
R. Milner

Session 1
(Chair: L. Cardelli, Digital Equipment Corporation)

Polymorphism Is Conservative over Simple Types
V. Breazu-Tannen and A.R. Meyer
Order-Sorted Algebra Solves the Constructor-Selector, Multiple Representation and
Coercion Problems
J. Goguen and J. Meseguer

Recursive Types and Type Constraints in Second-Order Lambda Calculus 30
N. Mendler

Complete Type Inference for Simple Objects. 37
M. Wand

Session 2

(Chair: D. Harel, Carnegie-Mellon University)

Domain Theory in Logical Form
S. Abramsky

On the Formal Semantics of Statecharts. 54
D. Harel, A. Pnueli, J.P. Schmidt, and R. Sherman

Modeling Computations: A 2-Categorical Framework 65
R.A.G. Seely : :

Partial Order Models of Concurrency and the Computation of Functions 72
H. Gaifman and V. Pratt

Session 3

(Chair: Y. Gurevich, University of Michigan)

Minimalism Subsumes Default Logic and Circumscription in Stratified Logic

Programming e 89
N. Bidoit and C. Froidevaux

Hereditary Harrop Formulas and Uniform Proof Systems 98
D. Miller, G. Nadathur, and A. Scedrov

Undecidable Optimization Problems for Database Logic Programs
H. Gaifman, H. Mairson, Y. Sagiv, and M.Y. Vardi

ix

Tuesday, June 23, 1987

Invited Speaker
(Chair: P. Scott, University of Ottawa)

Conjunctive Types and Algol-Like Languages (abstract). 119
J. Revnolds

Session 4

(Chair: S. Brookes, Carnegie-Mellon University)

The Power of Temporal Proofs
M. Abadi

Proving Boolean Combinations of Deterministic Properties. 131
B. Alpern and F .B. Schneider

Reasoning with Many Processes e 138
A.P. Sistlaand S. M. German

On the Eventuality Operator in Temporal Logic 153
A.P. Sistla and L.D. Zuck

Verification of Concurrent Programs: The Automata-Theoretic Framework
M.Y. Vardi

Wednesday, June 24, 1987

Invited Speaker
(Chair: J. Goguen, SRI International)

First-Order Predicate Logic as a Common Basis for Relational and Functional
Programming (abstract)
W.H. van Emden

Session §
(Chair: M. Fitting, Herbert H. Lehman College)

Partial Objects in Constructive Type Theory 183
R.L. Constable and S.F. Smith

A Framework for Defining Logics. 194
R. Harper, F. Honsell, and G. Plotkin

The Computational Behavior of Girard’s Paradox. 205
D.J. Howe

A Non-Type-Theoretic Definition of Martin-L6f’s Types
S. Allen

Session 6
(Chair: G. Plotkin, University of Edinburgh)

The Hierarchy of Finitely Typed Functional Programsc....oo.u... 225
A. Kfoury, J. Tiuryn, and P. Urzyczyn

. Definability with Bounded Number of Bound Variables 236
N.Immerman and D. Kozen

On Chain Logic, Path Logic, and First-Order Logic over Infinite Trees 245
W. Thomas

Full Abstraction and Expressive Completenessfor FP. 257
J.Y. Halpern and E.L. Wimmers

Session 7
(Chair: A Nerode, Cornell University)

A Semantical Approach to Nonmonotonic Logics. 275
Y. Shoham

I'm OK If You're OK: On the Notion of Trusting Communication. 280
R. Fagin and J.Y. Halpern

Hoare Logic for Lambda-Terms as Basis of Hoare Logic for Imperative Languages 293
A. Goerd:

Thursday, June 25, 1987

Session 8

(Chair: G. Longa, Universita di Pisa)

Kripke-Style Models for Typed Lambda Calculus 303
J.C. Mitchell and E. Moggi

Some Semantic Aspects of Polymorphic Lambda Calculus 315
P. Freyd and A. Scedrov

X-Separability and Left-Invertibility in \-Calculus. oo 320
C. Béhm and E. Tronci

Session 9

(Chair: J.-P. Jouannaud. Universite Paris-Sud-Orsay)

Inference Rules for Rewrite-Based First-Order Theorem Proving. 331
L. Bachmair and N. Dershowitz

Theorem Proving Using Rigid E-Unification: Equational Matings 338
J.H. Gallier, S. Raatz, and W. Snyder

Solving Disequations oot 347

C. Kirchner and P. Lescanne
Decidability of the Confluence of Ground Term Rewriting Systems 353
M. Dauchet, S. Tison, T. Heuillard. and P. Lescanne

Author IndeX 361

xi

Invited Speaker

Chair
A. Pnueli

Weizmann Institute of Science

Speaker
R. Milner
University of Edinburgh

Some Uses of Maximal Fixed Points

(Abstract of Invited Lecture)

R. Milner
Department of Computer Science
University of Edinburgh, Hope Park Square
Meadow Lane
Edinburgh EH8 9NW
SCOTLAND

The notions of indistinguishability and "lack of discrepancy" are captured by maximal
fixed points. Results in concurrent processes and operational semantics will be dis-
cussed.

Session 1

Chair
L. Cardelli
Digital Equipment Corporation

Polymorphism is conservative over simple types

(Preliminary Report)

Val Breazu-Tannen

Albert R. Meyer

Laboratory for Computer Science
MIT
Cambridge. MA 02139

Abstract. We prove that the addition of the
Girard-Reynolds polymorphic constructs to arbi-
trary simply typed equational lambda theories is
conservative. This implies that polymorphism can
be superimposed on familiar programming languages
without changing their behavior.

Using a purely syntactic method, we give an effec-
tive proof of conservative extension in the case of
equational reasoning that is complete when all types
are assumed non-empty. When polymorphic types
may be empty, we prove the stronger result that any
model of the simply typed lanibda calculus can be
fully and faithfully embedded in a model of the poly-
morphic lambda calculus.

1 Introduction

This paper is a sequel to a previous one, [BM87],
where the main result presented here was briefly an-
nounced. We will not, however, assume that the
reader is familiar with [BM87); we now recapitulate
some of our motivation.

In programming languages of universal power, the
computational data type domains must be distin-
guished from the classical data types because of the
“divergent” element. This is illustrated in [MR&6],
[BMB8T], by a typical example in which one starts
with a straightforward algebraic specification (for an

This work was supported in part by NSF Grant DCR-
8511190 and in part by ONR Grant N00014-83-K-0125. The

first author was partially supported by an IBM Graduate
Fellowship.

CH2464-6/87/0000/0007$01.00 © 1987 IEEE

integer data type with a conditional operator) and
adds tc it the ability to have recursive function dec-
larations. Using the “copy rule” (on recursive calls)
and the axioms of the specification one can then
prove equations between (algebraic) data type terms
that the specification alone cannot prove . Thus,
the equational theory of the programming language
with recursion is not a conservative ertension of the
data type specification.

In order to reason about the underlying data typesin
a semantics that accommodates recursion, we need a
logic that takes non-termination into account. LCF
[GMW79] or the partial lambda calculus [Plo85),
[Mog], are such logics that take recursion as a must
and try to reason about the resulting data domains.
In both logics, however, when reasoning about ex-
pressions of data element type one needs to worry
about more than the data type specification, namely
about whether certain subexpressions terminate or
whether they are defined.

In [BM87], we took a different course: we aimed
to preserve classical reasoning about the data by
achieving the kind of conservative extension that
fails above: Instead of recursion, we added to the
data type the constructions made possible by proce-
dural and polymorphic abstraction.

Following familiar tradition [Lan65], we take lambda
calculi with reduction rules as models of program-
ming languages and their evaluation, and in particu-
lar the Girard-Reynolds polymorphic lambda calcu-
lus, denoted by A7, [Gir72), [Rey74], ¢f. [FLO83] or

Hn fact, in the example in [MR86] [BM87] such reasoning
is inconsistent, i.e., any equation is provable.

[Mit84] as a formal model of polymorphic program-
ming 2. Its syntax is reviewed in Section 2. First, we
modeled data type specifications by algebraic theo-
ries [GTW78]. Let a(Z, E) be a many-sorted alge-
braic theory , where T is a many-sorted signature
and E is a set of algebraic axioms. Let AY(E, E) be
the polymorphic lambda theory (an extension of AY)
in which the sorts of £ are added as type constants,
the function symbols of £ are added as constants (of
suitably curried type), and the equations in E are
added to the axioms of AY.

In [BM87], we proved that the addition of the poly-
morphic constructs to any algebraic data type spec-
ifications is conservative, i.e., AY(Z, E) is a conser-
vative extension of a(Z, E).

We now go further and enrich our model for specifi-
cations from many-sorted algebras to certain higher-
order theories, specifically simply (finitely) typed
lambda theories. We will denote the (pure) sim-
ply typed lambda calculus [Fri75], [Bar84] with A~
A simply typed theory A~ (X, E) consists of base
(ground) types out of which one builds simple (fi-
nite) types using the — operator, of a signature)
of constant symbols of arbitrary simple type out of
which one builds simply typed lambda terms and of a
set E of arbitrary equational axioms between simply
typed lambda terms which are added to the axioms
of A~. Let AY(Z, E) be the polymorphic lambda
theory in which the base types, the constants in T
and the additional axioms in E are added to AY (A~
is already contained in AY). The main result of this
paper is

Theorem 1

For any simply typed theory X~ (X, E), the eztension
AY(Z, E) is conservative over \™(Z, E). That is, for
any A~ (X)-terms M and N,

EF"M=N < EpR M=N.

We remark that since adding A™ to arbitrary al-
gebraic theories is conservative [MR86}, Theorem 1
implies the earlier result of [BM87].

In our view, what makes Theorem 1 considerably
more interesting than the earlier result is the fact

2The version we consider here has um'vena(types but it
does not have eristential types.

that more features, such as function and data type
declarations, can be better and more naturally mod-
eled by simply typed lambda theories than by alge-
braic theories. Indeed, while the pure simply typed
lambda calculus does not get very far, the capabil-
ity of having extra constants and extra equations to
govern their behavior is quite powerful. For exam-
ple, simply typed theories can be used to model full-
fledged programming languages [THM84] by mod-
eling unrestricted recursion via higher-order fixed
point operators. Even arbitrary recursively defined
types can be modeled, by axioms asserting isomor-
phism between types. For example, the untyped
lambda calculus can be captured by declaring a type
u together with constants rep : (u—u)—u and
abs : u—(u—u) and axioms asserting that rep
and abs are inverse to each other (c¢f. [GMWT79] or
[Sco80)).

Polymorphic type disciplines have recently enjoyed
increased attention as the naturalness and usefulness
of the types-as-values paradigm which they embody
was recognized. As a result, the design of program-
ming languages has witnessed the widespread adop-
tion of polymorphic type systems. A number of ex-
amples and a survey of this field can be found in
[CW85). Theorem 1 shows that polymorphic con-
structs and reasoning can be added to any program-
ming language features that can be described within
the simple type discipline without changing the fa-
miliar behavior of these features. From this perspec-
tive, the adoption polymorphic type systems is safe.

There are two technical variants of the main theorem
because there are two related proof systems for poly-
morphic lambda-calculus which in general yield set-
theoretically incomparable theories from the same
axioms. The systems differ in the assumption of
whether polymorphic types may be empty. The orig-
inal polymorphic proof system is sound and complete
for deriving semantic consequences over all models
with all types non-empty [BM84]. But this system
is not sound in models with empty types. After ar-
guing that such models are of interest, [MMMS87]
gives a new proof system that is sound and complete
for deriving semantic consequences over all models.

The bulk of this paper (Section 3) focuses on
establishing conservative extension for the older,
nonempty-types, proof system of [BM84]. Using
purely syntactic methods, we give an effective proof

