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NUMBER. VARIABLE. FUNCTION

1.1 REAL NUMBERS. REAL NUMBERS AS POINTS
ON A NUMBER SCALE

Number is one of the basic concepts of mathematics. It originated
in ancient {imes and has undergone expansion and generalization
over the centuries.

Whole riumbers and fractions, both positive and negative, together
with the number zero are called.rational numbers. Every rational

number may be represented in the form of a ratio, %, of two
integers p and ¢; for example,

5 5

In particular, the integer p may be regarded as a ratio of two
integers %; for example,

6 0

| 6=1. O0=7
Rational numbers may be represented in the form of periodic
terminating or nonterminating fractions. Numbers represented by
noaterminating, but nonperiodic, decimal fractions are called:

irrational numbers; such are the numbers V' 2, V'3, 5—)-2, etc.

The collection of all rational and irrational numbers makes up
the set of real numbers. The real numbers are ordered in magnitude;
that is to say, for each pair of real numbers x and y there is one,
and only one, of the following relations:

'x<yv X=y, ‘X>!-,/

Real numbers may be depicted as points on a number sczle.
A number scale is an infinite straight line on which are chosen:
(1) -a certain point O called the origin, (2) a positive direction
indicated by an arrow, and (3) a suitable unit of length. We shall
usually make the number scale horizontal and take the positive
direction to be from left to right.’

If the’ number x, is positive, it is depicted as a point M, at
a distance OM, = x, to the right of the origin O; if the number x,
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is negative, it is represented by a point M, to the left of O at a
distance OM, = —x, (Fig. 1). The point O represents the number
zero. [t is obvious that every real number is represented by a
definite point on the number scale. Two different real numbers are
represented by diflerent points on the number scale.
The following assertion is also true: each point on the number
scale represents only one real number (rational or irrational).
To summarize, all real numbers and all points on the number
scale are in one-to-one correspondence: to each number there cor-
' responds only one point, and conver-

M O, M sely, to each point there corresponds
2.1 123 only one number. This frequently

) enables us to regard “the number x”

Fig. 1 -~ and “the point x” as, m a certain sen-

] se, equivalent expressions. We shall
make wide use of this circumstance in our course. -

We state without proof the following important property of the
set of real numbers: both rational and irrational numbers may be
found between any two arbitrary real numbers. In geometrical terms,
this proposition reads thus: both rational and irrational points may
be -found between any two arbitrary points on the number scale.

In conclusion we give the following theorem, which, in a certain
sense, represents a bridge between theory and practice.

Theorem. Every irrational number o may be expressed, to any
degree of accuracy, with the aid of rational numbers. . _

Indeed, let the irrational number & >0 and let it be required

" to evaluate o with an accuracy of %(for‘ example, %, %0, and

so forth ).

No matter what a is, it lies between two integral numbers N
and N4 1. We divide the interval between N and N 41 into n
parts; then a will lie somewhere between the rational numbers

N+2Z and N+1ﬂ. Since theit difference is equal to i,each
n n n

of them expresses & to the given degree of accuracy, the former
being too small and the latter, too large.’ :

Example. The irrational number ¥V 2 is expressed by the rational numbers:
1.4 and 1.5 to one decimal place, -
1.41 and 1.42 to two decimal places,

1.414 and 1.415 to three decimal places, etc.

1.2 THE ABSOLUTE VALUE OF A REAL NUMBER

Let us introduce a concept which we shall need later on: the
absolute value of a real number.
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" Defjnition. The absolute value (or modulus) of a real number x
(written |x|) is a nonnegative real number that satisfies the con-

‘ditiohs -
[x|=x ifxz0
‘ Jx|=—x ifx<0

Examples. [2|=2, |—5|=5, |0{=0. '

From the definition it follows that the felationship x | x| holds
for any «x. : ¥ ) ‘
Let us examine some of the properties of absolite values. -

1. The absolute value of an algebraic sum of several real numbers
is no greater than the :sum of the absoluté values of the terms

| x+yI<[x[+]y]
Proof. Let x+y >0, then _
[x+yl=x+y<|x|+|y| (since x<[x] and y|y))

Let x+y <0, then ,_ .

| [x+g]=—(+9)=(—x)+(—9) <|x]+]y|

This completes the proof. . _ '

The foregoing proof is readily extended to any number of terms.

Examples. , ,
j—~243|<|—2]4+]3]=243=50r 1 &5,
| —3—35| =] —3|+]—5]=3+5=8 or 8=8.

- 2. The absolute value of a diﬂerencé is no less than the difference
of the absolute values of the minuend and subtrahend:

: Jx—y|=[x[—]yl, |x]>]y]
Proof. Let x—y=2, then x=y42z and from what has been
proved - : , ’
Cxl=ly+2{<lyl+]z|=1y|+]x—y]

. _ x| —ly|<]|x—y|

thus completing the proof. .

3. The absolute value of a product is.equal tfo the product of the
absolute values of the factors: :

lxyz|=1x] [y] |2
4. The absolute value of a quotient is equal to the quotient of the
absolute values of the dividend and the divisor:
x| _1xl
, g™ Tyl ,
The latter two properties follow directly f w 4
absolute value.. proper ' ‘rec y vm the el

whence
N

\
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1.3 VARIABLES AND CONSTANTS

The numerical values of such physical quantities as time, length,
area, volume, mass, velocity, pressure, temperature, etc. are deter-
mined by measurement. Mathematics deals with quantities divested
of any specific content. From now on, when speaking of quantities,
we shall have in view their numerical values. In various phenomena,
the numerical values of certain quantities vary, while the numerical
values: of others remain fixed. For instance, in the uniform motion
of a point, time and distance change, while the velocity remains
constant.

A wvariable is a quantity that takes on various numerical values.
A constant is a quantity whose numerical values remain fixed. We
shall use the letters x, y, 2z, 4, ..., etc. to designate variables,
and the letters a, b, ¢, ..., etc. to designate constants.

Note. In mathematics, a constant is frequently regarded as a
special case of variable whose numerical values are the same.

It should be noted that when considering specific physical pheno-
mena it may happea that one and the same quantity in one pheno-
menon is a constant while in another it is a variable. For example,
the velocity of uniform motion is a constant, while the velocity of
urriformly - accelerated motion is a variable. Quantities that have
the same value under all circumstances are called absolute constants.
For example, the ratio of the circumiference of a circle to its dia-
meter is an absolute constant: = =3.14159. ... v

As we shall see throughout this course, the concept of a variable
quantity is the basic concept of differential and integral calculus.
In “Dialectics of Nature”, Friedrich Engels wrote: “The turning
point in mathematics was Descartes’ variable magnitude. With
that came mofion and hence dialectics in mathematics, and af once,
too, of necessity the differential and integral calculus.” :

1.4 THE RANGE OF A VARIABLE

A variable takes on a series of numerical values. The collection
of these values may difler depending on the character of the prob-
lem. For example, the temperature of water heated under ordinary
conditions will vary from room teniperature (15-18°C) to the boiling.
point, 100°C. The variable quantity v--cosa can take on all
values from —1 to -+1.

The values of a.variable are geometrically depicted as points on
a number scale. For instance, the values of the variable x — cosq
for all possible values of « are depicted as the set of points of the
interval from —1 to 1, including the points —1 and 1 (Fig. 2).

Definition. The set of all numerical values of a variable quantity
is called the range of the variable. ’

-
b 4
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We shall now define the following ranges of a variable that will
be frequently used later on.

An inferval is the set of all numbers x lying between the given
points a and b (the end points) and is called closed or open accor-
dingly as it does or does not include
its end points. . M

An open interval is the collection of
all numbers x lying between and excluding
the given numbers a and b (a < b); it
is denoted (a, b) or by means of the 77 0
inequalities a < x < b.

A closed interval is the set of all num-
bers x lying between and including the
{wo given numbers a and b; it is Fig. 2
denoted [a, b] or, by means of inequali-
ties, a<<x<b. .

If one of the numbers a or b (say, a) belongs to the interval,
while the other does not, we have a partly closed (half-closed)
interval, which may be given by the inequalities a<Cx < b and is
denoted [a, b). If the number 6 belongs to the set and a does not,
we have the half-closed interval (a, b], which may be given by
the inequalities a < x<Cb. o ,

If the variable x assumes all possible values greater than a, such’
an interval is denoted (a, + oo) and is represented by the conditio-
nal inequalities a < x <4 0o. In the same way we regard the infinite
intervals and half-closed infinite intervals represented by the con-
ditional inequalities :

as{x <400, —o0 <x<c, —oo XKL, —o < ¥ < oo

_ Example. The range of the variable x=cosa for all possible values of &
is the interval [—I, 1] and is defined by the inequalities —l <<x<C 1.

The foregoing definitions may be formulated for a “point” in place

of a “number”. ' -
The neighbourhood of a given point x, is an arbitrary interval
(a &) containing this point within it; that is, the interval (a, )
whose ‘end points satisiy the con-

0 Iy T T, dition a < x, <b. One often con-
¥ _ —r siders the neighbourhood (a, b)
s - of the point x, for which x, is the
Fig. 3 midpoint. Then x, is called the

, A centre of the neighbourhood and the
quantity —;—‘3, the radius of the neighbourhood. Fig. 3 shows the
_neighbourhood (x,—e, «,-+¢) of the point x, with radius e.
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. 1,5 ORDERED VARIABLES. .
INCREASING AND DECREASING VARIABLES. BOUNDED VARIABLES

" We shall say that the variable x is an ordered variable quantity
if its range is known and if about each of any two of its values
it may be said whicli value is the preceding one and which is the"

" following one. Here, the notions “preceding” and “following” are

‘not connected with time but serve as a way to “order” the values
of the variable, i. e., to establish the order of the respective values
of the variable. , : .

A particular case of an ordered variable is a variable whose
values form a number sequence x,, x,, x,, ..., x,, ... . Here, for
k' <k, the value x. is the preceding value, and the valye Xy is
the following value, irrespective of which one is the greater.

Definition 1. A variable is called increasing if each subsequent
value-of it is gréater than the preceding value. A variable is called
decreasing if each subsequent value is less than the preceding value.

Increasing variable quantities and decreasing variable quantities
are called monotonically varying variables or simply monotonic
quantities. ‘ o :

Example, When the number of sides of a regular polygon inscribed.in a circle is
doubled, the area s of the polygox} is an increasing variable. The area of aregular .
polygon circumscribed about a circle, when the number of sides is doubled, is
a decreasing variable. M may be noted that not every variable quantity is
necessarlly, increasing or decreasing. Thus, if « is an increasing variable over

* the interval [0, 2n], the ’variab,le x==8in a is not a monotonic quantity. It first
inclre&seg from 0 to 1, then decreases from' to —1, and then increases from

-Definition 2. The variable x is called bounded if there exists a
constant M.> 0 such that all subsequent values of the variable,
after a certain one, satisfy the condition

—MKxKM or XM

In other words, a variable is called bounded if it is possible to
indicate an interval [—M, M] such that all subsequent values of
the variable, after, a certain one, will belong to this interval.
However, one should not think that tfe variable will necessarily
assume all ‘values on the interval [—M, M]. For example, the
variable that assumes all possible rational values on the interval
[—2,2] is bounded, and nevertheless it does not assume all values
on [—2, 2], namely, it does not take on the irrational values,

1.8 FUNCTION

In the study of naturakphenomena and the solution of technical
and mathematical problems -one finds it necessary to consider the
. ‘variation of one quantity 4s dependent op the variation of another.
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For instance, in studies of motion, the path traversed is regarded
as a variable which varies with time. Here, the path traversed is
a function of the time. '

Let us consider another example. We know that the area of a
circle, in terms of the radius, is Q=aR? If the radius R takes
~ on a variety of numerical values, the area Q will also assume
various numerical values. Thus, the variation of one variable brings
about a variation in the other. Here, the area of a circle Q is a
function of the radius R. Let us formulate a definition of the cons

cept “function”. ' SN

Definition 1. If to each value of a variable x (within a certain
range) there corresponds one definite value of another variable ,

then y isa function of x or, in functional notation, y = f (x), y =@ (x),
and so forth.

The variable x is called the independent variable or argument.
The relation between the variables x and y is called a functional
relation. The letter f in the functional notation y = f(x) indicates
that some kind of operations must be performed on the value of
x in order- to obtain the value of y. In place of the notation
y=[(x), u=¢(x), etc. one occasionally finds y=y(x), u=u(x),
etc. the letters y, u designating both the dependent variable and
the symbol of the operations to be performed on x.

The notation y=C, where C is a constant, denotes a function
whose value for any value of x is the same and is equal to C.
- Definition 2. The set of values of x for which the values of the
function y are determined by the rule f(x) is called the domain
of definition of the function. ) g

Example 1. The function y=sin x is defined for all values of «. Therefore,
its domain of definition is the infinite interval — w0 < x < -+ oo.

Note I. If we have a function relation of two variable -quan-
tities x and y=f(x) and if x and y = f(x) are regarded as ordered
variables, then of the two values of the function y* = f(x*) and
y** = [ (x**) corresponding to two values of the argument x* and
x**, the subsequent value of the function will be that one which
corresponds to the subsequent value of the argument. The following
definition is therefore natural.

Definition 3. H the function y=f(x) is such that to a greater
value of the argument x there corresponds a greater value of the
function, then the function y=f(x) is called increasing. A decreas-
ing function is similarly defined.

Example 2. The function Q=nR? for 0 < R < o is an increasing function
because to a greater value of R there corresponds ‘a greater value of Q.

‘Note 2. The definition of a function is sometimes broadened so
that to each value of x, within a certain ranhge, there corresponds



