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Preface

This is a treatment of a number of aspects of the theory of hydrody-
namic propulsion. It has been written with in mind technical propulsion
systems generally based on lift producing profiles.

We assume the fluid, which is admitted in conventional hydrody-
namics, to be incompressible. Further we assume the occurring Reynolds
numbers to be sufficiently high such that the inertia forces dominate by
far the viscous forces, therefore we take the fluid to be inviscid. Ofcourse
it must be realized that viscosity plays an important part in a number of
phenomena displayed in real flows, such as flow separation at the nose of
a profile and the entrainment of fluid by a ship’s hull. Another ap-
proximation which will be used in general is that the problems are
linearized. In other words it is assumed that the induced disturbance
velocities are sufficiently small, such that their squares can be neglected
with respect to these velocities themselves. Hence it is necessary to
evaluate the domain of validity of the results with respect to these two a
priori assumptions. Anyhow it seems advisable to have first a good
understanding of the linearized non-viscous theory before embarking on
complicated theories which describe more or less realistic situations. For
elaborations of the theory to realistic situations we will refer to current
literature.

In low Reynolds number flow, singular external forces and moments
are very useful. It is one of the objectives of this book to promote the use
of external force fields also in the case of incompressible and inviscid
fluids as an expedient to generate velocity fields. Although in most text
books external force fields appear in the equations of motion, usually it is
assumed that they have an impulsive character or that they are the
gradient of a potential function. In the latter case they have lost, in
relation to incompressible fluids the ability of inducing velocities, they
only change the pressure field. An interesting feature of non conservative
external force fields is that they can generate vorticity in an inviscid fluid.
By this we have no need in a discussion about the origin of vorticity, to
make use of a slight viscosity which afterwards is abandoned again.
Using external force fields the concepts of for instance pressure dipole
and actuator disk, arise in a natural way from the integration of the
equations of motion.



Another objective of the book is to describe a linearized optimization
theory for propellers or more generally for systems of lifting surfaces.
The theory applies ro rather general types of force actions, for instance to
steady and to unsteady propulsion. It is assumed however that the lifting
surfaces form angles with the direction of the desired force, which are not
small. An exception is as we will show, the calculation of the optimum
thrust of the sails of a yacht sailing close to wind. This problem can be
reformulated as a problem of energy extraction and in this way it comes
under the theory described here.

We mentioned already that in this treatment viscosity has been
neglected and that we have to be careful with the interpretation of the
results. This especially holds with regard to optimization theory, for this
we refer to the introduction to chapter 5.

We also discuss the existence or non existence of optimum propulsion
systems for a number of types. We do this mainly for the case of
unsteady propulsion. It turns out that in some classes of admitted
propellers, optimum propellers do exist and in other classes they do not.
In the latter case it does not mean that the admitted class can not contain
propellers with a high efficiency. On the contrary, a non-existence proof
can be based on the fact that it is possible to construct a minimizing
sequence in the considered class of propellers for which the loss of energy
per unit of time theoretically tends to zero. However this will occur in
general at the cost of wilder and wilder motions so that no acceptable
propeller comes out in the limit procedure. Hence the non existence of an
optimum propeller means only that we cannot construct an algorithm to
find within the considered class a propeller with least energy losses.

For the proof of the existence of optimum propellers it seems that the
abstract method$ of functional analysis are unavoidable. The reason is
that it has to be proved that the lost kinetic energy per unit of time of the
propeller is a functional with some desired properties on some given set
of motions, such that this functional assumes its minimum at one of the
motions of the set.

The choice of the subjects and examples in this book, reflects the field
of research of the author and his collaborators, it is not claimed that a
complete survey of hydrodynamic propulsion theory is given. For in-
stance slender body propulsion which is of importance in the biological
sciences is not treated here. Also cavitation which is often (not always) an
undesired phenomenon in propulsion is not considered.

We assume in this monograph the reader to be familiar with a number
of basic concepts of hydrodynamics and with their application to wing
theory. We mention the velocity potential, the streamfunction, Bernoulli’s
theorem, the concept of linearization, the law of Biot and Savart, the
lifting line and the Kutta condition. Subjects which are fundamental for
some types of propulsion, such as the unsteady suction force at the
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leading edge of a profile are discussed. Also the well-known trailing

vorticity of a lifting surface is treated as an illustration of the use of
external force fields.

Groningen J.A. SPARENBERG
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1. External force actions

A body moving through a fluid, which we assume to be incompressible
and inviscid, will induce velocities and pressures in this fluid. Hence the
body will experience forces and moments caused by the integrated action
of the pressures on its boundary. Inversely by the law, action equals
reaction, the body will exert forces on the fluid. Sometimes these force
actions are accompanied by the shedding of vorticity as in the case of a
lifting surface of finite span, sometimes there is no vortex shedding as in
the case of the accelerated motion of a sphere, where in both cases we
assume that no flow separation occurs. In the first part of this chapter we
will consider this vorticity shedding of a body more closely.

Next we consider the pressures and velocities induced by an external
force field acting directly on the fluid, hence without the intermediary of
a body. These considerations are mainly based on a linearized theory. It
is discussed that force fields which are conservative are not of much
interest in propulsion theory, these fields induce only pressures and no
velocities. We calculate the work done per unit of time by an external
force field. This gives for instance a possibility to calculate the induced
resistance of a lifting surface.

A special case of an external force field is the singular force moving in
one way or another through the fluid. The velocity field of a singular
force yields the kernel function for a number of problems in lifting
surface and actuator surface theory. We will determine this velocity field
by means of limit considerations. For a mathematical discussion of the
highly singular velocity field the theory of distributions should be used.
This however complicates the reasoning to a large extent while it is less
easy to recognize the simple physics behind it. It is shown by Urbach [64]
that our results agree with those of the theory of distributions.

The vorticity induced by external force fields can be divided into
bound vorticity and free vorticity. We will demonstrate that such a
denomination is often subject to arbitrariness.

We conclude the chapter with the discussion of the suction force at the
leading edge of a profile without thickness. This force is of importance
for the calculation of the thrust delivered by a profile carrying out a
small amplitude motion.



1.1. Hydrodynamic forces on a moving body

We will discuss here some general results which describe the forces and
moments exerted by a fluid on a moving body. Our discussion will be
restricted to the derivation of some basic formulas needed in the next
section. For a more elaborate treatment of forces on rigid bodies we refer
to [3] and [41].

Consider a body B of finite extent moving in an inviscid and incom-
pressible fluid. In this fluid we have a Cartesian coordinate system
(x, y, z) with respect to which the fluid at infinity is at rest. During its
motion the body is allowed to change its shape and volume. We assume
that no vorticity is shed into the fluid. Hence the fluid motion is
irrotational and its velocity field v with components v,, v, and v, in the x,
y and z direction, can be derived from a potential function @ =
®(x, y, z, t) at all points of space outside the body

v=grad §. (1.1.1)

Because the velocity field is free of divergence we have

82 82 32
dive=A0=|—+—+—|P=0. (1.1.2)
9x?  dy? 922

Consider around B a control surface H which is coupled to the fluid
particles, hence it floats with the fluid. To the fixed amount of fluid in
the region 2 between H and the boundary 9B of B we can apply the
theorem of momentum. This states: the resultant force exerted on an

Fig. 1.1.1. Body with control surface H.
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amount of fluid equals the change of its momentum per unit of time. For
the formulation of the problem however it is more easy to replace Hbya
surface H fixed in space and to consider the region £ bounded by H and
9B. But then we have to add to the rate of change of momentum of the
fluid in £, the flux of momentum leaving 2 through H and to subtract
the incoming flux. For H we take a sphere with sufficiently large radius
R,, and with its centre in the neighbourhood of B.
The momentum I = I(t) of the fluid in the region { is

I= ,Lfg grad @ dVol = ®n ds, (1.1.3)

dB+H

where p is the density of the fluid and the unit normal n=(n,, n,, n,)
points out of the region 2. We want to calculate the force F= F(1)
exerted by the fluid on the body B during its motion. We also introduce
the force F,, = Fy (1) exerted by the fluid outside H at the fluid inside H.
Then we can write the balance of momentum as

d
FH—F=,LE/;B+H<D"ds+pfﬂv(v-n)ds, (1.1.4)

where the last term is the mentioned momentum flux through H.
The force Fy; can be written as

F,= —fpn ds. (1.1.5)
H

Using Bernoulli’s equation for unsteady motion
2 9d 2

p+3ulel +pg=po +inlel (1.1.6)

where p_ is the pressure at infinity and v, the velocity at infinity, we
write (1.1.5) as

F,,=,LfH{ %+%'v‘z} nds. , (1.1.7)

In (1.1.7) we used the fact that for any sufficiently smooth closed surface
H

an ds=0. (1.1.8)
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This vector equality follows from the repeated application of the scalar
equality

[ ARG Inct f(x 2, + f(x9)m) dS =0, (1.1.9)

which holds for “arbitrary” functions f, (i=1, 2, 3) of the indicated
arguments.

Because H is at rest with respect to our coordinate system we have
9P d
-/‘Hﬁn dS—a/H¢n ds. (1.1.10)
Substitution of (1.1.7) and (1.1.10) into (1.1.4) yields
= d 1 2
F= ;Ldt/;BCDndS+;LfH(2|v|n—v(v-n)} ds. (1.1.11)

Next we consider the limit of (1.1.11) when the radius R, of H tends
to infinity. At large distances the velocities induced by B tend to zero as
R} This happens when B changes its volume, otherwise the induced
velocities tend to zero more quickly. Anyhow the contribution of the
integral over H in (1.1.11) tends to zero for R, — co. This means that

F= —p,i ®n dsS. (1.1.12)
dt Jyp

In an analogous way we can derive a result for the moment M = M(¢),
caused by the hydrodynamic pressures at dB. This moment will be
calculated with respect to the origin O. We apply the theorem: the sum of
the moments about O of external forces acting at an amount of fluid
equals the change of the moment of momentum about O per unit of time
of that amount of fluid.

The moment of momentum about O of the fluid in £ is

pj;z(r*v) dVol=p/;B+Hd5-(r*n)dS, (1.1.13)

where * denotes the vector product and the equality follows by partial
integration. When we denote by M,, = M,,(¢) the moment about O of the
hydrodynamic forces at H exerted by the fluid outside H, the just
mentioned theorem assumes the form

MH—M=[.L—d—f D-(r=n) dS+[.Lf (r*v)(v-n)dSs, (1.1.14)
drJaprn H
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where the last term is the moment of momentum flux through the fixed
surface H.

The moment M), can, by using (1.1.6) and (1.1.9), be written as
9P
MH=pr{ w+%)u|2} (r+n)ds. (1.1.15)

Now we substitute (1.1.15) into (1.1.14). Using an analogous formula as
(1.1.10) and taking the limit R,, - oo we obtain

d
M= —ua£B¢-(r*n)dS. (1.1.16)

Here the integral over the surface H tends to zero because its integrand
tends to zero as R}, or more quickly when B does not change its volume.

Next we consider the case of an infinitely long cylinder B with
generators parallel to the z axis. This cylinder is allowed to move
arbitrarily and to change its shape, but such that its generators remain
parallel to the z axis. Then the induced fluid flow depends only on the
two coordinates x and y.

Again we assume the fluid to be at rest with respect to our coordinate
system, at large distances from B. We surround the cylinder B by a
circular cylindrical control surface H with radius R, fixed in space.
Because our consideration will be given for a slab of space of unit width
in the z direction, we consider H and the boundary 9B of B as lines in the
(x, y) plane (fig. 1.1.2)-and £ is the two dimensional region bounded by
them. An essential difference with the previous three dimensional case is
that here §2 is doubly connected.

- X

Fig. 1.1.2. Cross section of cylinder B and control surface H.



The momentum I = (I, (¢), I ,(¢)) of the fluid in the region 2 is

1=(1,.1) ,u/f(a¢ arp)d dy, (1.1.17)

where @ = @(x, y, t) is again the velocity potential. Because { is doubly
connected, the function @ can be “multivalued”, we make &£ simply
connected by introducing a cut (Q,, Q,) from 3B, towards H.

By a partial integration we can change the double integrals (1.1.17)
into integrals along the line L consisting of H, B and (Q,, @,) in the
indicated directions. We find

(1., y)-—#{f¢dy, fdidx}=p.j;(y,—x)dtp. (1.1.18)

When there is circulation around B the function @ will assume
different values at both sides of (Q,, Q,). This circulation has to be
independent of time, otherwise vorticity would be shed into the fluid
which here just as in the three dimensional case, is assumed not to
happen. Because the difference of @ at both sides of the cut is a constant,
the contributions to (1.1.18) from the two sides of (Q,, Q,) cancel. When
i is the imaginary unit and { = x + iy we can write (1.1.18) as

I=(1, +11)——mf do. (1.1.19)
aB+H
The resultant hydrodynamic force on 3B is denoted by F= (F(¢)+
iF,(1)), the resultant force on H by the outside fluid is

F,=—i pr d¢. (1.1.20)

Now we apply again the theorem of momentum. Then we have as in the
previous case, to consider the momentum flux through H. Analogous to
the reasoning for the three dimensional case it is easily seen that the
contribution of this to the force F tends to zero when the radius R, tends
to infinity. Hence we write

. d
F,—F= _l”dlj;B+H§ do, (1.1.21)

where the symbol = means that the momentum flux through H has been
left out of consideration.
Because H is fixed we have

d Y Y
Ef,f d@—fﬂfdﬁ— - [ ar % (1.1.22)
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The latter equality is based on the following consideration. The potential
& can change by a certain amount by encircling the body B. This amount
however is independent of time because we supposed the circulation
around B to be constant, hence 3¢ /3¢ assumes the same value after
encircling B. From this (1.1.22) follows.

Next we write (1.1.20) by substitution of (1.1.6) and substitute the
result together with (1.1.22) into (1.1.21). Then we find for the limit
Ry— o0

F=(Fx+iFy)=iy%/;B§d(b. (1.1.23)

1.2. Force actions and shed vorticity

Consider a body B of finite extent moving through an incompressible
and inviscid fluid which is again at rest at infinity with respect to our
Cartesian coordinate system (x, ¥, z). The body B will move with a mean
velocity U in the positive x direction and repeats its velocities after each
time period 7 or after each covered distance

b= Ur, (1.2.1)

while also the neighbouring field of flow has the same periodicity. When
we assume that no vorticity is shed by B we prove that no mean force can
be exerted by B on the fluid.

In this case (1.1.12) is valid. The mean value of F(¢) over one period 7
of time becomes

l./H“rF(t) dr=-£ [@(x+b,y,z,t+7)n(x+b,y, 2z, t+71)
T T /38
~®(x,y,z,)n(x,p,z,t)] dS. (1.2.2)

The velocities of the fluid at times ¢ and ¢ + 7 are the same for the points
(x,»,2) and (x+b,y,z). Hence the difference of the potential at
corresponding points and times can only be a constant c, then

1 pe+r pe
= = 2 =0. 1.2.
1'./; F(:) d: . faBndS 0 (1.2.3)

From (1.2.3) we find that a body of finite extent, moving periodically
in the way as we described, cannot experience a force with a non zero
mean value without shedding vorticity. Inversely, by the principle action
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equals reaction, such a body cannot exert a mean force on the fluid
without leaving behind vorticity. It cannot act as a lift producing wing or
a thrust producing propeller. When vorticity is shed periodically the
function @ is not defined in the whole space and the velocities do not
tend to zero at infinity in the way as was needed for the derivation of
(1.1.12). Hence the foregoing argument does not hold. Because the
velocity field belonging to the shed vorticity represents kinetic energy of
the fluid, we can state; when a periodically moving body of finite extent
inducing a periodic neighbouring field of flow, exerts a mean force on the
fluid this has to be accompanied by energy losses.

Next we consider the moment with respect to 0, of the fluid pressures
exerted at the body B. Now we use (1.1.16) which is valid when no
vorticity is shed. Hence in that case we find for the mean value of the
moment around the x axis

e (7 R
. /;M(t)dt L ex j;B[fp(x+b,y,z,t+'r)

X {(r(x,y,z,t)+be )*n(x+b,y,z, 1+1)}

—®(x,y,z,t){r(x,y,z,t)*n(x,y, z, t)}] ds,
(1.2.4)

where e, is the unit vector in the x direction. Because
n(x+b,y, z,t+7)=n(x,y,z,1) (1.2.5)

and again the difference of the potential at corresponding points and
times can be only a constant ¢ we find

e 4 ne
Zx = £° — =0. 1.2.
. /(;Mdt fa (yn, zny)dS 0 (1.2.6)

T

The last equality follows from (1.1.9).

From (1.2.6) it follows that a periodically moving body of finite extent
which induces a periodic field of flow and which exerts at the fluid a non
zero mean moment around a line parallel to its mean direction of motion,
has to shed vorticity.

We can also consider moments around lines /; and /,, parallel to the
y-axis and z-axis respectively, which translate in the positive x direction
with the velocity U. It can be seen, that in the case of no vorticity
shedding, the moments around these lines need not to have zero mean
values. A simple example is a flat wing of zero thickness of large aspect
ratio having constant chordlength. The wing has a nonzero angle of



