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FOREWORD

During the week beginning August 30, 1976, eight lecturers and seventy-five
participants assembled at the Technical University of Eindhoven for what
turned out to be one of the most successful short courses ever organised on
Electromagnetics and Antennas. The course, which originated in Urbana,
Illinois in 1970, has previously been offered in Copenhagen, Naples, Trond-
heim, and at a number of locations in the United States. On each of these °
occasions the lecturers carefully prepared a set of lecture noteé for
distribution to the participants at the beginning of the course. Two of
these were later edited by Raj Mittra and published as texts in 1973 and
1975, Both of these texts have been well-received in the electromagnetics

community throughout the world.

The course has evolved with each offering ever since its inception in 1970.
The contents of the 1976 Eindhoven course were not available in any of the
previous publications; as a result, the organisers of the Eindhoven course
believed that the publication of these lecture notes would be a welcome

addition to the previous two texts.

Though the organisers has originally planned to thoroughly edit the notes
from‘the point of view of unifying the notation, format, etc., this thought
was later .abandoned on the advice of the publisher for the sake of expe-
diency of publication time. In addition, the cost-saving photo-offset method
of printing was opted for, once again to save time and costs. Also, the
original order of the various chapters was retained in order to avoid
retyping the equation numbers, etc., that a reorganisation of the  chapters
would have required, Hopefully, however, the reader will not find it too
difficult to shift from one chapter to another, each of which is essentially
" self-contained. The book mﬁy, in fact, be regarded as somewhat like the ] ‘
proceedings of a épecial symposium in which the contributions from a number
of different authors are collectively presented in a special volume, Never—
theless, a guide to’the chapters, given below, may be useful to a reader

going through the volume for the first time.

Chapter .1 by Van Bladel is an exposition of the low-frequency asymptotic
technique for solving scattering and coupling problems in the long wavelength
region. Next, the reader may wish to turn to Chapter 6 by de Hoop in which
thg{general theoretical aspects of the integral equation methods and their

numerical solutions are discussed. He may follow this up with a look at
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Chapter 3 by Davies in which the numerical techniques for solving electro-
magnetic problems are developed in more detail. Leaving this topic, the
reader may now move on to the highfffequency regime by going to Chapter 4
which provides‘him with the fundamentals of ray techniques for electromag-
netics. Once he has digested this information, at least by familiarising

" himself with the basic concepts on ray methods, he may go on to Chapter 5 by
Bach which emphasises the practical application of Geometrical Theory of
Diffraction (GID) in considerable detail., Having whetted his appetite on the
low—~ and high-frequency methods, he may then wiéh to turn to Chapter 7 which
presents an overview of methods for combining the integral equation technique
with asymptotic solutions and the application of Galerkin's method in the
transform domain. The latter topic was also touched on in Chapter 6 by de

Hoop and the reader may wish to return to that chapter for additional details.

The remaining chapters, viz., 2 and 8, are somewhat independent in their own
right. Chapter 2 by Clarricoats discusses the subject of hybrid-mode feeds
for reflector antennas, a topic that is of considerable current interest in
the area of satellite communication anhtennas. Though numerical methods are
employed for the solution of propagation characteristics of uniform and
tapered corrugated waveguides, the emphasis here is on practical applications
bf these structures. Finally, Chapter 8 by Unger deals with the topic of the
"waveguides of the future", viz., planar and fiber waveguides' for optical
communication, and presents a comprehensive review of analysis and perfor-
mance of these two types. of dielectric waveguides. Ray methods developed in
Chapter 4 are frequently used for analysing these inhomogeneous waveguides
with attendant simplificatidn in analysis and gain of physical insight into

the mechanism of operation of these waveguides.

Typically, the short courses on electromagnetics and antennas cover a diverse
range of topics and the Eindhoven course wés no exception. By its very
nature, this book deviates in theme and structure from the standard texts in
electromagnetic'theory or antennas. The editors sincerely hope, however,
that the wealth of information in this‘boék, which has been put together by
eight leaders in the field, will be challenging and estimulating to the
electromagnetlcs communlty, and that this book will be reviewed with the
same generous interest and enthusiasm as the previous volumes.
E.J. Maanders and R. Mittra Directors,
Eindhoven 1976 Summer School on Electromagnet1cs
and Antennas
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1. Low-frequency asymptotic techniques

By J. Van Bladel - University of Ghent, Belgium

INTRODUCTION

In the present chapter, we assume the maximum dimensions L of the ob-
| jects of interest (current-
-carrying volumes, scatte-
rers..,) to be small with
respect to the free-space
wavelength A (Fig. 1.1).

The factor kL, where L 1is
the diameter of the smallest

sphere containing all points

of the object, is therefore
a small parameter. Low-fre-
quency techniques are essen-

tially perturbation techni~

Fig. 1.1

Current-carrying volume

ques, based on a power—-expan-

sion of the form

2 _ _ 27
¢=¢o+kL¢l+(kL) ¢2+... | (k = X—o (1.1)
An equivalent expansion, of more frequent use, is
. e\ 2
P=do+ike, +(jk) " +... (1.2)

The perturbation technique proceeds by inserting (1.2) in the relevant dif-
ferential or integral equations, and by subsequently identifying terms of

the same order in jk on both sides of the equations. The mathematical le-

vel of the method is therefore rather elementary,- except for some very dif-
ficult questions of convergence. The practical implications, however, are
considerable, and form the justification for the present review. Our sur-
vey is not restricted to electromagnetic topics, but will also encompass
some selected acoustic problems. Acoustic situations are often directly
relevant to their electromagnetic cbunterpart. They have, in addition,

the advantage of floodlighting the essential points of a method, without

noise interference from mathematical details.
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ACOUSTIC SCATTERING

1.1 Scattering by a soft body. The zero-th order term

Fig. 1.2 shows a soft body im-
mersed in an incident pressure-
wave P'. The boundary condition

)
P = 0 can be rewritten as

pS=-p? on S (1.3)

The unknown scattered pressure

is expanded in a series

p3=p5+ KPS+ (k) 2p5+. .. (1.4)
0 1 2
Fig. 1.2 Separate (iterated) equations
ineident wave the integral representation [ 1]
Ps(r)=ffS[G(r|r')%§T-- p® 395%%#—2st' (r outside 8) - (1.5)

where G(?T?') is the Green's function for free~space, viz.

-. -.—'
G(rlr )=--z—-——-——- (1.6)
-" ""'"‘"
r-r l
s ap®
Equation (1.5) implies that P® can be calculated once P~ and T are given
on the surface (in fact, one of these values suffices to determine the

oP
8

field uniquely). 1In the present case, P° is known through (1.3), but e
is not given explicitly. A formula such as (1.5) might therefore be bran-
ded as useless. It turns out, however, that significant reéults obtain

from inserting (1.4) in (1.5), together with a corresponding expansion for
e-jkI?:F'l For distances'l?:?'] small with respect to A (i.e. in the

static region), identification of terms of zero~th order in ik yields

pS(my=-rr 1 —-Tdap‘s’ s'- Lprplgny 3 (L _yas (1.7
0 r 4m S|?_?,l on 4n' s 0 r w_l——__::'_‘- * )

If the body is immersed in a plane wave e-Jkui'r, Pa is equal to one, and

‘the second term disappears. The first term, however, survives. Setting

T on S(whereupon the left hand member takes the value P8=-P8=-1) yields an
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3P,
integral equation for i which is precisely of the type satisfied by

the surface-charge densi&y pg on the metallized surface S carried to unit
. oP§ . ' .
potential. The determination of 5;& is seen to reduce to the solution of

an electrostatic problem. This is not surprising, as propagation effects

require distances of the order of A before their full power can be felt,
The static nature of the low-frequency approximation was recognized years
ago by Lord Rayleigh. ' Present-day efforts center on the determination of

higher-order correction terms in (1.4), with a view toward extending the

use of the low-frequency approximations to the lower part of the resonance

region (where L becomes of the order of \).

1.2 Scattering by a soft body. Higher-order terms

To determine the various P, it is first possible to express the pro-

blem in the form of a sequence of (iterated) integral equations [ 2] . The

"mother" equation is obtained by writing a relationship similar to (1.5)

*

for the incident field, viz.

PP P ac(?l?')] . -
o ffS[G(rlr )§ET P = ds'=0 . rons$ (1.8)
and addifg it to.(1.5) to yield

s i .
ffsc(?rF')[%gT + 3§ ] ds'=-p! T on S (1.9)

This equation generates the iterated set

1 % apé i
7l —=TGar * ) ds'"E,
[e-r'|
1 o) apy i
'3
Z—iffs E‘E-'—l('s'ﬁ'r*’ﬁ-r)ds PI+LO (1.10)

In the second equation, L0 is a characteristic length of the body, given by

C ,
Lo=ﬁ?— . (r.11)

0
where C is the capaﬁity of the metallized body. For a sphere, for example,
L, is equal to a, the radius. ‘

0
Equation (1.9) is a singular integral equation of the first kind, to
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. . i s
be satisfied by the normal derivative of the total pressure P=P 4P . It

is also possible [ 4] to obtain an integral equation of the second kind

for 92. Thus,
on
1 ar(r) _ 36(r|T") 3P v _ 3P (¥) =
= ;igffs n Ty ds —5n for r on S (1.12)

where 0 is a small area containing point r. s

Having determined the expansion terms in jk for 34 o0 S, we are now
in a position to calculate p° everywhere through use of (1.5)., Thus,

s S

BPO ' BPl

P°(r,k)=/S G(T[T") (g + jkg—r + ...)dS'

-ffS(Pé+jkP?+...)§E£§l$ilds' (1.13)

n

. . . . . s ., . e
This expression is suitable for the evaluation of P" in the radiation zome.
If the incident field is a plane wave, for example, one finds

-jkR

e 2 e_JkR
0 R

_ -
0 R + ‘terms in k (1.14)

- jkL

lim P°=-L

R

The first two orders clearly represent omnidirectional patterns. They
show that the (low-~frequency) far—-field does not reveal anything about the
shape of the scatterer; it merely gives information on a bulk property,

namely L Higher frequencies are necessary to better "feel" the shape

of the ogject, through non-uniform phase-illumination of its various parts.
This, in turn, results in direction-sensitive interference, and a fine
structure in the pattern. Equivalently, the detailed structure of the
scatterer cannot be revealed unless higher multipole modes in (1.14) are
excited through use of higher frequencies. Analog remarks can be made

for the electromagnetic field.

Eq. (1.14) shows that the first order field at large distances dépends

only on a zero-th order property; namely LO. This result was arrived at

by making use of a basic reciprocity property, viz. [ 1]

3¢ 3¢]
iy ¢ 35— d8= =l1, ds (1.15)

valid when ¢, and ¢, are solutions of Laplace's equation and are regular
1 2 g
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at infinity. It follows that the dominant term in the scattering cross-

-section is also a function of L, alone. More precisely,

0’=4TTL(2) + terms in k2 (1.16)

The curve of g as a function of kL is seen to start as a constant augmen-
ted by a parabola of the second degree.
The value of L. satisfies various inequalities, which can serve to

0 ,
establish upper and lower bounds for this quantity. For example [ 3]

3 3
3 4
L0 > e v (1.17)

where V is the volume of the scatterer. For all convex bodies, in addition,

T%FV > L, (1.18)
where S is the area of the boundary surface. The equality sign corresponds
to the sphere. Senior has calculated L0 for rotationally Egmmetric bodies
(e.g. the spheroid), and discovers that the variation of ool 25 2
function of (t/w) is very similar for all shapes which he investigated
(e=axia1 length, w=width).

The scattering problem for the soft body is, fundamentally, an exte-

rior Dirichlet problem for the wave-equation. Kleinman [ 4] has described

a method by which the solution is explicitly expressed in terms of the
Green's function for the corresponding potential problem. The resulting
integral equation can be solved iteratively.

The exterior problem can also be tackled by inserting expansion (1.4)

in the relevant differential equation, viz. V2P3+k2Ps=O. The procedure,

which is often termed Stevenson's method, yields

2

s S__ .S
VR =0 Pg=-P, on S
2_s s i
v Pl=0 P1=—P1 on § (1.19)
v2pSps pSa_pl on §
250 22

. S . S .
To solve these equations, it is necessary to know the behavior of P~ in
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the distant static field (i.e. at distances large with respect to L, but

small with respect to A). Eq.(1.7) implfes that Pg is regular there. A
]
1

at large distances, but that (P?-LO) is regular [ 1] .

similar formula, written for P , shows that this quantity approaches LO

1.3 Low-frequency scattering by hard bodies

The configuration of interest is shown in Fig. 1.2, The boundary

condition for a hard body is %%-- 0 or, equivalently,

aP® _ _ap'

a T on S (1.20)

The analysis proceeds much as in the case of a soft body. In an incident

-]
s 0
series for P starts with the first order term. Thus,

plane wave, for example, the zero-th order term P, is absent, and the

ps-jkp7+(jk)2p§+... (1.21)

s . . i, -, . .
The reason for the absence of P0 is evident : PS 1s constant in the vici-

nity of S, hence satisfies the boundary condition on its own, without the

need for an additionall(sCattered) field. The requirements on P? are :
vzpf-o

P} _ _ |

. 3m YitYa | ons (1.22)

:P? . regular at large distances

The solution can be eipressed as the superposition of a single- and a -
double-layer potential [ I]]. Each direction of incidence has its own P?,

but it suffices to solve the problem for three independent direction
s

]
the potential generated in the vicinity of a magnetic conductor (boundary

X, ¥, z to obtain P, for arbitréry'ﬁ-i (Fig.1.3). Consider for example

condition %%-0), by an incident field G;--gradwi. The additional potential

due to the presence of the scatterer satisfies
2.8
v wx 0

N

X - .
a—n— un.ux . » . O!‘l S (].23)
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Analog equations can be written

for the y- and z-directions. Once
N they are solved, the sought po-

tential for arbitrary"ﬁ-i follows

as

S_, 8~ =— s~ — s — =
Pi=¢x(ui-ux)+wy(ui.uy)+wz(ui.uz)

7., - =11 5— g +f U V=u.. 0>
2 ui.(wxux+ﬁ;uy.ﬁ;uz) ui.w
(1.24)
Fig. 1.3 The vec:tor'm's characterizes the
Seatterer in three orthogonal shape of the body, and is indepen-

ineident fields
dent of the direction of incidence.

For a sphere of radius a, for example,
o= 20 on S (1.25)

where Eﬁ is a unit vector along the radius. It is to be noticed that
s I3 [ . [
U~ is a function of x, ¥, Z, hence that it varies along S.

» s [ - L L d L
Turning now to P2, we notic2 that this function satisfies [ 1]

2_8
v PZ-O

s
3P2

el -(Hi.ﬁn) (?.Hi) | (1.26)

from which can be deduced that the u dependence is of the form

P=u, f'& | (1.27)

where the dyadic ﬁ:characterizes the shape of the body. The far-field

of the scatterer turns out to be

s k2 e-ij k2 e-JkR
.;;: P == ZEV——K——+ =R [Vu - ff (_ )u ds] (1.28)

+ terms in k

. ' 8 . ‘L, . ) ' .
It 13 seen that P~ consists of a combination of a monopole- and a dipole
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term. The latter can be put in the form
— — —— —_s— — - ——
-, \ =u.. . ll
u.[Vui ffs(ui.w )undS] ug ..U (1.29)

where the dyadic ?; is given by

T =V I-//P% dS = VT + W... . (1.30)
m n
= 3= =, . . .
For a sphere, for example, ﬂm=2na I (I is the identity dyadic). The

(symmetric) dyadic ?; can also be written as
ﬁm=—ff@unds (1.31)

with

D= (hgmx)u +(ho-y)u + :-z)'dz-xpx'ixwy’ﬁya«w 5, (1.32)
Clearly, wx is the total potential which appears on the scatterer when the
latter is immersed in an incident field u_.

Higher order terms for p® can be found, either by solving the diffe-
rential equations with the help.of Stevenson's method, or by considering .

the integral equations { 2]

-%—P(;)d-limffs 3G§? T p(yas'=pi (D) (1.33)
o+0 >0 °f

3 . GGE[T) pimrygars BLE) ,
520 B s gL P as= D) (1.34)

These can be solved iteratively. It is to be noticed that the hard-body
problem is a Neumann problem. 1Its solution can be expressed in terms of
the static Green's functioﬁ relative to the Neumann boundary condition
(i.e. %% = 0on S) [5]. Some numerical results are available [ 6][ 7] .

In a more recent method, the solution is obtained by iteration of a
boundary integral equation [8][9). A pair of coupled surface intégral
equations is necessary to solve the scattering problem for a body which
- is neither soft nor hard, but penetrable [ 10].

The "magnetic polarizability" dyadic ?; has bgen studied extensively
for bodies of revolution, in particular because of its relevance to
electromagnetic problems (see Sec.1.11), Senior et al. have used (1.33)
to obtain numerical results for several shapes, some of these good appro-

ximations to the profile of a rocket, For a body of revolution, the

bl '!t‘/\

-




