Turbo Pascal

forthe
e *. IBMPC

i —
:

Loren E. Radford
Roger W. Haigh

Turbo Pascal
for the
IBM PC

Roger W. Haigh
Vermont State Colleges

)
yy -

PWS Computer Science
Boston

PWS PUBLISHERS

Prindie. Weber & Schmidt +@+ Duxbury Press - @+ PWS Engineering -Z\+ Breton Publishers &
Statler Office Building + 20 Park Plaza - Boston, Massachusetts 02116

Copyright © 1986 by PWS Publishers.

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transcribed, in any form or by any means-—electronic, mechanical,
photocopying, recording, or otherwise—without the prior written permission of
PWS Publishers.

PWS Publishers is a division of Wadsworth, Inc.

Library of Congress Cataloging-in-Publication Data

Radford, Loren E.
Turbo Pascal for the IBM PC.

Inciudes index.

1. IBM Personal Computer—Programming. 2. PASCAL (Computer program
language) 3. Turbo Pascal {Computer program language) 1. Haigh, Roger W.
II. Title.

QA76.8.12594R33 1986 005.265 85-19355
ISBN 0-534-06426-4

ISBN 0-534-0k42kb-Y

Printed in the United States of America.
86 87 88 8 90 — 5 4 3 2 1

Sponsoring Editor: Bob Prior

Production Coordination: Elise Kaiser

Production: Editing, Design & Production, Inc.

Interior and Cover Design: Elise Kaiser

Cover Printer: Phoenix Color Corp.

Text Printer/Binder: Maple-Vail Book Manufacturing Group

Cover art © 1985 by Sanjay Kothari.

Preface

This text is intended for use in a beginning-level one-semester Pascal
course and by individuals who desire to teach themselves to program.
In addition to presenting Pascal, we also introduce the learner to
problem-solving techniques, which include the use of a simple, flexi-
ble algorithmic language. In creating even a moderately complex pro-
gram, the process is always complicated by the idiosyncrasies of the
dialect of the language available. For that reason, we prefer to develop
a solution in a simple, but flexible, algorithmic language and then
translate it into Pascal {Chapter 3). We have found such an approach
indispensable in developing large-scale research and administrative
applications in other languages.

There is a tendency for many people to view learning how to
program as a vocational skill—much like the ability to use a calcula-
tor or typewriter. However, there is a growing body of opinion that
suggests that the ability to develop and debug a computer program
contributes to the development of human problem-solving skills and
to the improvement of the thinking process itself. An essential aspect
of our approach to teaching Pascal involves problem-solving tech-
niques that are language independent.

Of the one hundred or more existing computer languages, Pascal
has been growing in importance. This is probably because the lan-
guage is highly structured and quite powerful, yet not particularly
difficult. Thus, Pascal is suitable for a wide variety of applications
from business to scientific.

In presenting the Pascal language, we concentrate on the Turbo
version. We also show the UCSD Pascal variations for those who use
that dialect. We have been impressed by the ease of use and speed of
Turbo Pascal. These features, along with cost considerations, make
Turbo a very desirable piece of software that an individual can afford
to own. Although the earlier versions of Turbo had limited graphics
capability, the most recent version (3.0} introduces a Turtlegraphics
capability that considerably enhances that feature of the software.

We assume no prior computer experience on the part of the
reader. However, those with some experience may be able to move
more quickly and tackle some of the more complex programming
projects. In the first two chapters we introduce the reader to the func-
tional parts of the Turbo Pascal system. In presenting material on the
Pascal systems we have attempted to lead the user through the essen-
tial housekeeping tasks using a system of dialogues. (A version of
these dialogues for UCSD Pascal is presented in Appendix A.) Our
intent is to minimize the confusion that often results when one is
required to cope with an unfamiliar operating system and a new lan-
guage at the same time.

In Chapter 3 we introduce programming in the context of prob-
lem solving. In this chapter a reasonably complex problem is solved
and the basic elements of the algorithmic language are developed.
Some attention is given to program documentation and structure.
Chapter 4 includes a discussion of the input and output procedures,
the basic ordinal data types, and arithmetic operations. In Chapter 5
the first structured statement (the while loop) is used in conjunction
with a structured data type (the file]. From this point, the develop-
ments of statements and data structures parallel one another.

Chapter 8 provides a thorough treatment of functions and proce-
dures with attention to passage of information and variable scope.
With this chapter the concept of program modularity is fully devel-
oped. Recursion is also introduced in this chapter. Chapters 9 and 10
complete the development of data structures with a treatment of ar-
rays, records, sets, and linked structures. In these chapters certain
lengthier programs are developed as applications. These applications
include computing statistical measures of a data set, producing a
credit record system, determining a word-frequency distribution, and
writing a program documenter. The last two chapters (Chapters 11
and 12) deal with some of the graphics features of the language. The
programs in these chapters provide examples of many of the program-
ming techniques introduced throughout the text.

Program listings have consistently been presented with line num-
bers for ease of reference. These listings along with the program out-
put have been reproduced from computer output. We have chosen
this option to remove errors introduced during the production pro-
cess. Programs have been selected to illustrate the use of statements
and data structures as simply as possible. Often, prototype procedures
or functions are presented that the student may use in other applica-
tions. The programs have not been extensively commented. We have
relied upon modularity and selection of identifier names to make the
programs reasonably self-documenting. The programs from the text
are available on diskettes for the IBM PC from the publisher.

Finally, certain information has been gathered at the end of each
chapter. This includes syntax diagrams, a data tree that displays the

relations between the data types as they are developed, a glossary of
terms in which the new concepts and terms are expressed precisely,
and a listing of the new Pascal syntax. We intend for this material to
provide a perspective on the parallel development of data structures
and Pascal statements and to enhance the reader’s ability to discuss
the language with some precision.

Acknowledgments

In preparing this text we have benefited from the assistance of a num-
ber of people. We wish to thank our colleagues and reviewers, Robert
Holloway of the University of Wisconsin and Evelyn Speiser of Glen-
dale Community College. Thanks also to Nancy G. Haigh, who read
and reread drafts of the manuscript in order to improve its clarity and
style, and to the staff of PWS Publishers, especially Elise Kaiser and
Bob Prior, and Karen Zack of EDP, Inc.

Loren E. Radford
Roger W. Haigh

Contents

The Language and the Operating
System

1.1 Text Structure and Scope

1.2 Pascal as a Language

1.3 The Pascal System

1.4 Using the Keyboard

1.5 Using Turbo Pascal: Guided Exercises
1.6 Hierarchy in the Turbo Pascal System

Running Simple Programs

2.1 Elements of a Complete Program
2.2 Entering a Program

2.3 Compiling a Program

2.4 Executing a Program

2.5 Changing a Program

2.6 Dealing with Errors

2.7 Debugging

2.8 A Word About Program Style

2.9 Saving a Program

2.10 Configuring Your System Diskette

3 | Program Development and Problem-
Solving

3.1 Programming and Problem-Solving
3.2 A Problem-Solving Model

3.3 The Nature of an Algorithm

3.4 Pseudocode Illustrated

3.5 A More Complex Algorithm

3.6 Coding the Algorithm

3.7 Completing the Job: Documentation

4 | Fundamentals of Data Manipulation

4.1 Performing Operations Upon Data

4.2 Unstructured Data Types

4.3 Storing Data in Memory: Variables and Constants
4.4 Arithmetic Operations with Numeric Constants
4.5 Mixed-Mode Expressions

4.6 Input/Output Procedures

4.7 Creating a Data Type

4.8 Pascal Identifiers

4.9 Syntax Diagrams

5 | Loops and Files

5.1 The Structured Statement

5.2 Defining a Data Set

5.3 Using Text Files for Data Sets

5.4 While Loops in Pseudocode

5.5 Relational Operators and Boolean Values
5.6 While Loops in Pascal

5.7 Counters and Accumulators in While Loops
5.8 Creating Text Files with Programs

5.9 Files That Contain Numeric Data

6 Conditional Statements

6.1 Program Branching

6.2 Single Alternative Decision Structures
6.3 Double Alternative Decision Structures
6.4 Nested Decision Structures

6.5 Compound Boolean Expressions

6.6 Multiple Alternative Decision Structures
6.7 User-Defined Ordinal Types

7 | Loops and Arrays

7.1 Algorithms and Data
7.2 Loops in General

7.3 Syntax for Repeat Loops
7.4 Indexed Loops

7.5 Using the Loop Index
7.6 Structured Data Types
7.7 Subscripts and Arrays
7.8 Using Arrays

7.9 Sorting with an Array
7.10 Strings

7.11 String Length

7.12 Text File Input/Output Using Strings

8 Functions and Procedures

8.1 Modular Programs

8.2 Built-in Functions

8.3 User-Defined Procedures and Functions

8.4 Choosing Between Functions and Procedures
8.5 A Template for Modular Programs

8.6 Designing a Modular Program

8.7 Random Numbers

8.8 Other String Operations

8.9 Recursion

10

1

Arrays and Records

9.1 More on Arrays and Data Structures

9.2 Subrange Types

9.3 Arrays and User-Defined Ordinal Types

9.4 Using an Array as an Accumulator

9.5 Application: Elementary Statistical Measures
Using Arrays

9.6 Two-Dimensional Arrays

9.7 Matrix Operations

9.8 Application: Order Exploding Using Arrays

9.9 The Record and the With Statement

9.10 Application: Designing a Small Record System

Sets and Linked Structures

10.1 Completing the Data Tree

10.2 Sets

10.3 Set Operations

10.4 Base Conversions

10.5 Application: Word Frequency Distribution
10.6 A New Variable Type: The Pointer

10.7 Constructing a Linked List

10.8 Modifying a Singly Linked List

10.9 Binary Trees

10.10 Application: Program Documentation

Introduction to Graphics

11.1 Turtlegraphics

11.2 The Graphics Screen

11.3 Color Options

11.4 Drawing Simple Geometric Figures
11.5 Using Recursion to Produce Figures

11.6 Application: Building an Interpreter

12 | Graphics Applications

12.1 Graphics in Data Analysis

12.2 Application: Plotting a Time Series
12.3 Application: Producing X-Y Plots
12.4 Application: Producing Histograms
12.5 Application: Computer Mapping
12.6 Map Resources

Appendices
A | The UCSD p-System

A.1 Exercises for UCSD Pascal

A.2 Hierarchy in the UCSD System
A.3 Entering a Program

A.4 Compiling a Program

A.5 Executing a Program

A.6 Changing a Program

A.7 Dealing with Errors

A.8 Saving a Program

A.9 Configuring Your System Diskettes

B | Library of Programs

PROGRAM STATISTICS
PROGRAM MATRIX_OPERATIONS
PROGRAM TANDEM_SORT
PROGRAM PM_CORR

PROGRAM BINARY_TREE

C | ASCII Codes and Their Meanings

Answers to Selected Exercises
Index

1 5’ The Language

Text S ucture

ang

Scope

~and the
Operating
System

This text is an introduction to problem-solving using the Pascal lan-
guage. Our primary goal is to help you develop both problem-
solving skills and proficiency in the Pascal programming language. It
is necessary, however, to spend some time discussing the specific
software to be used. We will consider versions of the language that
run on the IBM Personal Computer and compatible machines.

Our attention will focus on Turbo* Pascal. Turbo Pascal was de-
veloped by Borland International. It is now in its third version, which
includes extended graphics capabilities. As its name implies, Turbo is
characterized by a rapid compilation time. This feature is particularly
valuable while leaming the language and during program develop-
ment.

*Turbo Paséai is licensed by Borland iﬁtematia;iél, Scotts Valley, California.

Figure 1.1
Relation of the
Computer fo You

The second software system, the UCSD* p-System, will be dis-
cussed in Appendix A. The letters UCSD refer to the University of
California at San Diego where this dialect of Pascal was developed.
Pascal programs in the text will show any variations required to run
in UCSD Pascal. We will refer to the two software systems generi-
cally as the Pascal system.

The Pascal system acts as an interface between the computer and
you [Figure 1.1). While the user communicates with the Pascal sys-
tem, it in turn is communicating with the computer on a more fun-
damental level. The Pascal system responds to the user’s instructions
in order to perform the housekeeping tasks associated with develop-
ing and manipulating programs.

When using Pascal, the housekeeping tasks require more explicit
attention than when writing BASIC programs, for example. This fact
may complicate early efforts to learn the language. In particular, the
UCSD p-System has a rather complicated hierarchical structure. The
Turbo Pascal system is considerably less complex than the UCSD
p-System but to use it effectively requires some knowledge of the
IBM PC disk operating system. We recognize this obstacle and at-
tempt to minimize your frustration by providing step-by-step direc-
tions for performing the essential tasks.

You can obtain more details on the system you are using from
the documentation provided with that system. In particular, the
Turbo Pascal Reference Manual provides a description of that imple-
mentation of Pascal. Users of the p-System are referred to the Begin-
ner’s Guide for the UCSD p-System,** the User’s Guide for the UCSD
p-System,*** and the UCSD Pascal Reference for the UCSD
p-System.t

Our emphasis will be on writing well-structured programs in Pas-
cal. No previous programming experience is assumed. If you have al-
ready programmed, you may need to give up some habits developed

1 4

User Pascal system |«—— Computer

*UCSD Pascal is a trademark of the Regents of the University of California.

" “Beginner's Guide for the UCSD p-System (Boca Raton, FL: IBM Corp., 1982} and
{Softech Microsystems, Inc., 1981}.

**"User's Guide for the UCSD p-System (Boca Raton, FL: IBM Corp., 1982} and
[Softech Microsystems, Inc., 1981).

tUCSD Pascal Reference for the UCSD p-System {Boca Raton, FL: IBM Corp., 1982)
and (Softech Microsystems, Inc., 1981}.

1.2
Pascal as a
Language

while programming with other languages. If you have never pro-
grammed, you are fortunate that your first experience is with a struc-
tured language such as Pascal.

In this chapter, it is assumed that you are familiar with certain
basic terms used in computing, such as

Computer language

Program

Computer memory

Central Processing Unit (CPU)
Input/output {I/0) devices

File

Software

If you are not familiar with these terms, look up their definitions
in the review section at the end of this chapter. Additional computer
terminology is defined as it is introduced in each section.

The Pascal language was developed in 1968 by Professor Niklaus
Wirth at the Eidgenossische Technische Hochschule in Zurich,
Switzerland. The official description of Pascal can be found in the
Pascal User Manual and Report.” In the report section of the publi-
cation, Wirth states that:

The desire for a new language for the purpose of teaching
programming is due to my dissatisfaction with the presently
used languages whose features and constructs too often can-
not be explained logically and convincingly and which too
often defy systematic reasoning. Along with this dissatisfac-
tion goes my conviction that the language in which the stu-
dent is taught to express his ideas profoundly influences his
habits of thought and invention, and that the disorder gov-
erning these languages directly imposes itself onto the pro-
gramming style of the students.

Pascal is often referred to as a highly-structured language. The
meaning of the term structured language is not easily explained
at this point. For now, we will quote Yourdon, who has written

*K. Jensen and N. Wirth, Pascal User Manual and Report (New York: Springer-Verla;
1978), p. 133.

1.3
The Pascal
System

that a structured language lends itself to ‘‘writing programs
according to a set of rigid rules in order to decrease testing problems,
increase productivity, and increase the readability of the resulting
programs.”* We will say more about structured programming in later
chapters.

The names of many computer languages are acronyms. For ex-
ample, BASIC means Beginner’s All-purpose Symbolic Instruction
Code, and FORTRAN stands for FORmula TRANSslation. In contrast,
Pascal is named for Blaise Pascal, a seventeenth-century French math-
ematician, philosopher, and inventor of an adding machine that per-
formed calculations with wheels and cogs.

It is best to think of the Pascal system as the environment in which
Pascal programs are written. Keep in mind that the purpose of the
Pascal system is to assist in the performance of the housekeeping
tasks described in Section 1.1. Knowing the Pascal system allows you
to develop and process programs more rapidly, but it does not im-
prove the structure or the content of those programs.

In this section, the following operations performed by the Pascal
system are discussed:

Editing
Compiling
Executing

il A

Filing

The system performs other operations, but for now our attention is
restricted to these four. A brief description of each operation follows.

Editing usually conveys the notion of correcting or modifying an
existing document. In the Pascal system, editing refers to the process
of creating, as well as modifying, documents. The result of the editing
is the creation or the modification of a text file. The text file is a
representation of a document (program or data) in a form that humans
can read.

Compiling refers to the process of converting a text file
consisting of a Pascal program into a form readable by the machine

“Edward Yourdon, Techniques of Program Structure and Design {Englewood Cliffs,

N.J.: Prentice-Hall, Inc., 1975}, p. 144.

14
Using the
Keyboard

i

(or more nearly readable in the case of UCSD Pascal). To execute a
program that exists only in text form, the compiling must occur first.
During the process of compilation, errors in the text version of the
program that will prevent its execution are detected. Such errors are
identified to the programmer, who must correct them (using the Edi-
tor) before a machine-readable version of the program can be pro-
duced. Thus, two versions of a program exist—one that the program-
mer produces (a text file) and one that the compiler produces (a code
file).

Executing refers to causing the computer to perform the instruc-
tions in a program. As noted in the previous paragraph, a program
must be in code form before it can be executed. During the execution
of a program, each instruction in the code version of the program is
executed by the central processing unit.

Filing refers to a set of processes which may be considered as
record-keeping. These processes include saving programs, retrieving
programs, inquiring about disk contents, and so forth. Some filing
processes can destroy programs or data sets, and they must be used
carefully.

The keyboard is the primary mechanism for communicating with the
computer. Therefore, it is important to use it effectively. In particu-
lar, certain special keys will be used frequently to interact with the
Pascal system. First note that there are two shades of keys. The
lighter keys in the center are those normally found on a typewriter.
The lighter keys at the right are those found on an adding machine
or electric typewriter keypad. The darker keys are used to invoke spe-
cial functions relating to the operation of the computer. Somec of
these darker keys, such as the shift keys, backspace key, caps lock
key, and so forth, also perform normal typewriter functions. Some
keyboards may not have the shading described here. Some of the spe-
cial keys are marked as follows:

Ctrl control key

. enter key
Esc escape key
Alt alternate key
Del delete key
— cursor left

1 Cursor up

) cursor down
— cursor right

Figure 1.2
IBM PC Keyboard

1.5

Using Turbo
Pascal:
Guided
Exercises

Starting
Turbo

i
h

Figure 1.2 is a diagram of the IBM PC keyboard. Locate the special
keys on this diagram.

LR LTI T T T

i

¥ 3 ; oYY . B

1T

fmeion T ok e
keys keypad

In this section, we lead you through a set of exercises designed to
acquaint you with Turbo Pascal using an IBM PC. These exercises
include:

Starting Turbo

Examining the Turbo files

Running a Pascal program

Backing up the Turbo diskette

Creating private diskettes

A o

In describing the start-up of Turbo Pascal it is assumed that you have
the original diskette furnished with the software or a backup copy of
that diskette. We also assume that you know how to boot the disk
operating system (DOS| using your DOS diskette. Thus, you may
start with the screen showing the following display:

Current date is Tue 1-061-198¢
Enter new date: 9-15-85
Current time is @:0¢:31.91
Enter new time: 14:80

The IBM Personal Computer DOS
Version 2,10 (C)Copyright IBM Corp 1981, 1982, 1983

A>

