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PREFACE TO THE FIRST EDITION

This book is designed to emphasize those aspects of classical electricity
and magnetism most useful to the modern student as a background both
for experimental physics and for the quantum theory of matter and radia-
tion. We have made no attempts at novelty beyond those inherent in
looking at subject matter that has become a part of the foundations of
physics, and bhas thus gained in usefulness as it has lost in immediacy.
While no rigid adherence to historical development is attempted, the em-
phasis is on physical theory as evolved from fundamental empirical laws
rather than on mathematics and strict internal logic. Thus Maxwell's
equations are derived from the experimental laws of Coulomb, Ampere,
and Faraday, instead of being postulated initially. In the opinion of the
authors the physical concepts emerge more clearly in this way, and the
approach represents the manner in which physical theory evolves in prac-
tice. The field formulation is preferred to the action-at-a-distance view-
point even in electrostatics, however, since for the conventional treatment
it is more readily extended to the nonstatic case. This despite the fact
that it is possible, both for static and for nonstatic phenomena, to formu-
late an entirely consistent electromagnetic theory based on the delayed-
action-at-a-distance principle.

The climax of 19th century electrodynamics was the theory of electro-
magnetic waves and its confirmation, and it is inevitable that any treat-
ment of the subject today includes the principles of recent applications
involving metallic boundaries. The introduction of the electrodynamic
potentials and the Hertz solution of the wave equation are treated in the
conventional way, but we have chosen to introduce the special theory of
relativity before undertaking the theory of the electron. Historically the
evidence was building up simultaneously along two separate lines, and
many of the early difficulties in the derivation of radiation theory as ap-
plied to elementary charges were clarified in a very simple way by rela-
tivistic considerations. This approach has the advantage that the other
problems of classical electron theory, especially those which have taken
on added significance with the advent of quantum theory, can be ex-
hibited more clearly.

Rationalized mks units are used throughout, simply because the ma-
jority of modern reference books and papers are now written in this sys-
tem. Especially in the consideration of the electron, all quantities are so
written that they can be immediately trapslated into Gaussian units. In
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vi PREFACE TO THE FIRST EDITION

Appendix I will be found a discussion of the units in current use, and
tables contain the fundamental relations of electrodynamics expressed in
various systems as well as numerical conversion factors,

The text is based on graduate course lectures given by one of us (Panof-
sky) at the University of California and Stanford University. Early
mimeographed notes on much of the subject matter were prepared with
the aid of Howard Chang, Roger Wallace, Richard Madey, and Lee
Aamodt, whose help is gratefully acknowledged. The editorial help of
Miss Laurose Becker 1s also acknowledged with thanks.

The reader 1s assumed to have had courses in advanced calculus, differ-
ential equations, vector analysis, and, at least for the latter portions, is
assumed to be familiar with classical mechanics on the graduate level.
Prior knowledge of tensor analysis would be helpful, but is not necessary.
References to appropriate collateral and background material are included
at the end of each chapter, with some indication of what relevant materiai
is to be found in each reference, and a full bibliographical list is given at
the end.

The presentation is designed to be somewhat flexible, depending on the
organization of course material. For purely theoretical courses Chapters
4 and 5, together with portions of other chapters dealing with partioular
applications of potential theory, ete., may be omitted entirely. Some of
the material in Chapter 12 is often covered In optics courses. And if a
course in relativity theory is given separately Chapters 15-18 may be
omitted, since we have endeavored to make Chapter 19 continuous with
Chapter 14, insofar as the theory of radiation is concerned.

A final word about problems: for the most part they are designed to
supplement the text. It had been our intention to give credit to original
sources for those we did not invent ourselves, but in almost every case
this turns out to be impossible: like discoveries, problems are rarely made
singly, and in a subject as old as this ingenuity mainly recreates old ideas.
And despite our adherence to the exhortation used by Becker, “be ye
doers of the word and not hearers only, deceiving your own selves,” we
have not concentrated primarily on problem solving. The heart of the
matter, we believe, lies in the ideas and their development.

W. K. H. P
M. P.



PREFACE TO THE SECOND EDITION

The second edition of Classical Electricity and Magnetism is intended
principally to remedy errors and inadequacies of the first edition. We
have attempted to correct errors and make extensive revisions withou:
changing the basic approach to the material; we hope that in so doing
we have responded to the many helpful comments we have received from
users of the book without introducing too many departures. The only
radical change is in the treatment of radiation reaction, which has been
completely rewritten and introduces new concepts. New material has
been added in several instances: there is a new chapter on the basic prin-
ciples of magnetohydrodynamics; the use of ‘“‘superpotentials” for ob-
taining symmetric expansion of electric and magnetic wave-fields has
been introduced; the material on the classical radiation of electrons
moving in a circle has been expanded; the motion of particles with spin
is treated; and the classical forms of such theorems as the dispersion
relation and the “optical” or “shadow’’ theorem are now included.

We have not attempted to make the methods used in this book uni-
form; on the contrary, we believe that there is a great deal of educational
value in the demonstration that many of the methods used are equivalent.
As before, we stress physical ideas rather than mathematical techniques.

Without the generous help of many correspondents, who have pointed
out errors or transmitted comments, this revision would not have been
possible. This help has been so extensive that we cannot acknowledge
~ each contribution; we are, however, particularly grateful to F. Rohrlich
for a helpful exchange of correspondence. We are also much indebted to
Mrs. Laurose Richter for assistance in preparing the manuseript and
to Mrs. Adele Panofsky for preparing the index.

W. K. H. P
M. P.

Stanford and St. Louis
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CHAPTER 1
THE ELECTROSTATIC FIELD IN VACUUM -

The interaction between material bodies can be described either by
formulating the action at a distance between the interacting bodies or
by separating the interaction process into the production of a field by
one system and the action of the field on another system. These two
alternative descriptions are physically indistinguishable in the static case.
If the bodies are in motion, however, and the velocity of propagation of
the interaction is finite, it is both physically and mathematically advan-
tageous to aseribe physical reality to the field itself, even though it is pos- -
sible to replace the field concept by that of “delayed” and “advanced”
direct interaction in the description of electromagnetic phenomena. We
shall formulate even the electrostatic interactions as a field theory, which
can then be extended to the consideration of nonstatic cases.

1-1 Vector fields. Field theories applicable to various types of inter-
action differ by the number of parameters necessary to define the field
and by the symmetry character of the field. In a general sense, a field
is a physical entity such that each point in space is a degree of freedom.
A field is therefore specified by giving the behavior in time at each co-
ordinate point of a quantity suitable to describe the physical content.

The types of fields possible are restricted by various considerations.
Fields are classified according to the number of parameters necessary to
define the field and by the “transformation character” of the field quanti-
ties under various coordinate transformations. A “scalar” field is deseribed
by the time dependence of one quantity at each point in space, a “three-
dimensional vector field” by three such quantities. In general, an “nth-
rank tensor field” requires the specification of d* components, where d is
the dimensionality of the space in which the field is defined. A scalar field
is a zero-rank tensor field, and a vector field is a first-rank tensor field.

"The field description of a physical entity is independent of the particular
choice of coordinate system used. This fact restricts the transformation
properties of the field components under coordinate transformations. We
consider two types of transformations of coordinates. “proper” and “im-
proper” transformations. Proper transformations are those which leave
the cyclic order of the coordinates invariant (i.e., do not transform a
right-handed into a left-handed coordinate system in three dimensions);

8550052



2 THE ELECTROSTATIC FIELD IN VACUUM [cHAP. 1

translation and rotation are proper transformations. Improper transfor-
mations, such as inversion of the coordinate axes and reflection of the
- coordinate system in a plane, change the cyclic order of coordinates.

A basic vector is the distance r connecting two points; the components
of r may be designated by r.. The components V, of a veclor field V trans-
form like the components r, under both preper and improper transforma-
tions. A scalar is invariant under proper and improper transformations.
The components P, of a pseudovector field P transform like the compo-
nents r, under proper transformations, but change sign relative to r,
under improper transformations. A pseudoscalar is invariant under proper
transformations but changes sign under improper transformations.

The electric field is a three-dimensional vector field, i.e., a field definable
by the specification of three components. The theory of vector fields was
developed in connection with the study of fluid motion, a fact which is
betrayed repeatedly by the vocabulary of the theory. We shall consider
some general mathematical properties of such fields before specifying the
physical content of the vectors.

All vector fields in three dimensions are uniquely defined if their circula-~
tion densities (curl) and source densities (divergence) are given functions
of the coordinates at all points in space, and if the totality of sources, as
well as the source density, is zero at infinity. Let us prove this theorem
formally. Consider a three-dimensional vector field V(z, y, 2) such that

V.-V=g (1-1)
vXV=c (1-2)

Equation (1-2) is self-consistent only if the circulation density c is irrota-
tional, i.e., if

Vec=0. (1-2)
We shall first show that if
V= —Vé+ VX A, (1-3)
where :
1 s(zt)
&(2a) = — / — Ay’ 1-4
AT | r(aa, zh) (1-4)
and
1 c(zl) ;
A(z,) = — / —2 1-5
4T ] r(xa, 2l) =5

then V satisfies Eqs.. (1-1) and (1-2).

. s

C =Ny A
» \Q LI



1-1] VECTOR FIELDS 3

It is necessary to examine the notation of Eqs. (14) and (1-5) before
proceeding with the proof. The symbol z, stands for z, y, z at the field
point; the symbol z; stands for 2/, i/, 2’ at the source poini; the function
7(2a, o) is the symmetric function

,"n—i’(xa'_x:l)2

representing the positive distance between field and source point. The
reader should note carefully the functional relationships explicit in Egs.
(1-4) and (1-5). In integrals of this type these functional dependences
will often not be fully stated; for example, we may write the volume
integrals

r(xe, zh) =

1
¢ = 1r / &, (1-4%)

1 ’
A= 41r_/ dv', (1-5")

as a short notation. We shall sometimes use R for the radius vector from
an origin of coordinates to the field point z., and & for that of a source
point z,; then r = [R — .

Let us demonstrate that V as expressed by Eq. (1-3) is a solution of
Eqgs. (1-1) and (1-2):

V-V= V%4 Vv (VXA = -V

-z {1

The Laplacian operator V? operates on the field coordinates; hence

1 1
V- V= — -4—1-'-./372 (;) dv'. (1~6)

Now we can show that

v ‘r(a:., z.)} = TAm e, =7)

where 8(1), the Dirac 5-function, is defined by the functional properties
5(r) = 0, r>0, ie, z. 1, (1-8)
/ 3(r)dr = 1, (1-9)



4 THE ELECTROSTATIC FIELD IN VACUUM [chap. 1

if the point r = 0 is included in the volume of integration, and by
1@ 5@ v = Sz, (1-10)

for any arbitrary function f so long as the volume of integration includes
the point r == 0. The §-function is not an analytic function but essentially
. a notation for the functional properties of the three defining equations. It
will always be used in terms of these properties.
Since it is evident by direct differentiation that V2(1/r) = 0 for r # 0,
we have only to prove that

f Vi(1/r) d = —4w (1-11)
in order to verify Eq. (1-7). [In Eq. (1-11) the point r = 0, that is,
Zq = Zg is included in the volume of integration.] By the application of -

Gauss’s divergence theorem, applicable to any vector V,*

[V-Vdv—-—fV-dS,

fv‘* (l> v = /vG)dS'
T, r
r-ds’ .
o fes [
where Q is the solid angle subtended at z, by the surface of integration

S’ over the variables z;, Since S’ includes z,, we have simply [ dQ = 4,
and Eq. (1-11) is verified. Hence from Egs. (1-6) and (1-10},

it is seen that

vV-V=— 4%/3\72 (%) v’ = [s(x{,) 8(r) dv = s(zq), (1-12)

which was ¢o be proved.

* Strictly speaking, Gauss’s divergence theorem is not necessarily applicable,
since the function V = ¥(1/r) is singular at r = 0. If, however, we remove
the singularity by substituting for 1/r the function (1 — e~*/a)/r, for example,
where @ i1s an arbitrarily small radius, then

1 —rla r —rla rfr —rla

Since the magnitude of the second term varies only as 71, its surface integral

over a small sphere surrounding the point r = 0 will vanish as the radius of
the gphere goes to zero.



1-1] VECTOR FIELDS 5]
Similarly,

VXV=—VUXVé+VX (VXA = V(V-A) — VA

- ZI%U(C' V)V (—f—) ' — /cv"’ G) dv’} : (1-13)

We shall be able to show that the first integral vanishes if ¢ is bounded in
space. If we anticipate this result, we see immediately, from Eq. (1-7),
that

VXV = / c(zl) 8(0) d' = (o), (114

so that Eq. (1-2) is also satisfied. _

To prove that the first term of Eq. (1-13) vanishes, let us.examine the
coordinate variables involved in the integrand. The operator V has the
components d/dx.. If we introduce the operator Vi = 9/dx/, operating
on the source coordinates, then for any arbitrary function g[r(z., z2)], we
have '

Vg =—vV'g (1-15)

Thercfore the first integral of Eq. (1-13) may be written

I— /(c- v)v (%) & = /(c- v)v (%) '

The differential operators now operate on the variables of integration and
we may integrate by parts. Each component of I becomes

= f(c~v’>i<1.)dv'
oxl N
= /v'-{ci(i)} dv'—/(v'-c)—a—G)dv'. (1-16)
axh \7 L \7

The second integral vanishes because the divergence of ¢ is zero [Eq.
(1-2")]. The first term ean be transformed to a surface integral by means
of Gauss’s theorem; if ¢ is bounded in space the surface may be taken
sufficiently large so that ¢ is zero over the entire integration. Hence
Eq. (1-16) is zero, and the proof is complete.

We have thus proved that if the source density s and the circulation
density ¢ of a vector field V are given everywhere, then a solution for V
can be derived from a scalar potential ¢ and a vector potential A. The
potentials ¢ and A are cxpressed as integrals over the source and cireula-
tion densities.



