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Preface

The purpose of this international seminar was to bring together
promising probabilistic tools and advanced research in computer system
performance evaluation and, more generaly, to contribute to the enlargment

of the interface between computer science and probability.

The computer science oriented papers collected in this volume
cover a wide range of applications including communication systems,

architecture, data structures and algorithms.

Salient features of these systems such as throuput, response
time or stability condition can be formulated in tern of probabilistic

problems of specific nature.

These problems, in turn, often reduce to the analysis of some stea-
dy state properties of basic continuous (or point) processes related

to queueing models.
The main mathematical methods -which rely on Markovian features,

functional equations and ergodic theory~ are presented in more theoretical

or survey papers.

F. Baccelli G. Fayolle



Preface

L'objectif de ce séminaire international &tait de mettre en
. Py L]
contact des outils probabilistes prometteurs et les recherches sur

1'évaluation de performances des systémes informatiques.

Les articles "informatiques" continus dans ce volume concer-
nent de nombreux domaines d'applications. On trouvera notamment des ana-
lyses de systémes de communication, d'architectures, de structures de

données ou d'algorithmes.

On peut voir dans le détail dans quelle mesure la détermination
de caractéristiques essentielles de ces systémes —-tels que le débit, le
temps de réponse ou la condition de stabilité- peut se formuler comme un

probléme probabiliste.

A leur tour, ces problémes se réduisent le plus souvent i
1'analyse de certaines propriétés stationnaires de processus continus

ou ponctuels spécifiques 1liés 3 des modéles de files d'attente.

Les outils probabilistes les plus utilisés, qui reposent sur
1'analyse markovienne, les méthodes d'équations fonctionnelles et la
théorie ergodique, sont aussi présentés dans des articles de nature plus

théorique.

F. BACCELLI G. FAYOLLE
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AN ASYMPTOTIC ANALYSIS

OF BLOCKING

F.P. Kelly

Statistical Laboratory,
University of Cambridge,
16 Mill Lane,
Cambridge CB2 1SB
England

1, INTRODUCTION

Product form queueing networks have proved valuable in
modelling a variety of computer and communication systems, and have
been flexible enough to represent adequately many of the features
arising in such applications ([2], [3]1, [6]). They have not,
however, been able to provide much insight into the phenomenon of
blocking, a phenomenon which appears particularly unyielding to any
general form of exact analysis. In this paper we outline the
progress made with alternative, asymptotic approaches to blocking.

The approach to be discussed is based on a model which can be
described as follows. Messages are transmitted through a series of
nodes linked by communication channels. The lengths of successive
messages are independent identically distributed random variables,
and the time taken to transmit a message through a channel is equal
to its length. Each node has a finite buffer, and when the number
of messages at a node reaches tﬁe buffer size transmission from the

preceding node 1s interrupted. The most basic measure of the



performance of such a system is the maximum rate at which it can
accept messages, which we term the throughput. A system's through-
put is in general difficult to calculate exactly, but there are
available fairly tractable bounds. For a given system these bounds
are not especially tight, but they do make possible a number of
qualitative insights into the phenomenon of blocking. 1In particular
we discuss the rate of decay of throughput as series length in-
creases, and the rate at which buffer sizes should grow to ensure
that throughput does not decline to zero. We also consider the
effect of reordering the sequence of messages, and the effect of
segregating long messages from the rest.

The reader is referred to [4] and 5] for further discussion
of the topics of this paper and for detailed proofs of the results
quoted here, and to [1] and [7] for reviews of previous work on

queueing systems with blocking.

2. THROUGHPUT AND SERIES LENGTH

An infinite sequence of messages is to be transmitted through
a series of n nodes linked by communication channels (Figure 1).
A ﬁessage is not available for transmission from node i
{(1=2,3,...,n) until its transmission from node 1-1 has been
completed, and each node transmits messages in the order of their
arrival. Each node has a buffer able to hold up to B meséages.
If node 1 contains B messages then transmission from node i-1
is blocked and must wait until node 1 has completed transmission
of a message. Input of messages to nodé 1 is instantaneous, so that
this node always contains B messages, and transmission from node
n 1s never blocked. The time taken by a node to transmit a message
is,equal_to the length of the message, and islthus the same at

t

each of .the n nodes. The length of the u h message is xu ’



where Xl,Xz,... are a sequence of independent positive random
variables with common distribution F .

Suppose that at time t=0 the system begins operation with
nodes 2,3,...,n empty and the first B messages of the input
sequence present at node 1. Let Nt be the number of messages
which have completed transmission from node n by time t . Then
we define the throughput of the system to be

ENt

lim —=
tre t

A({n,B,F)

N
lim t a.s.

tre t

where the existence and equality of the limits can be demonstrated.
It will be convenient to use the symbol A (n,B,F) as a label for
the system itself as well as for the numerical value of the system's
throughput.

Although 1t is in general difficult to calculate A(n}B,F) R
bounds can be obtained quite easily. For example, conéider the
system A{(n,l,F) . ?he throughput of this system can only be
improved if nodg 1 is allowed to begin, but not complete, trans-
mission of a message when node i1+1 is full. This corresponds to
the rule common in models of manufacturing job-shops where the
server at node i can process a job even though node i+l is full,
but the job cannot move on and release the server at node i wuntil
there is a space available at node i+l . Now the time taken to
input a message to the hmended system is simply the maximum of the
previous n message lengths. Hence the throughput of the amended

system is M(n,F)"} , where

M(n,F) = E max{xl,xz,...,xn}



= Jolt - Fx)Mlax .

We thus have the upper bound

A(n,1,F) < M(n,F) % . (2.1)

A lower bound can be found by a related argument. Suppose that
operation of the system 1 (2n,1,F) 1is restricted as follows:

no message can complete transmission from node i (i=1,2,...,2n-2)
until node 1i+2 (in addition to node 1i+l) is empty. For the
restricted system the time that elapses between message u-1 and

X }

message u (u>n) leaving node 1 is max{xu_l,xu_z,.. a-n

+ max{xu,xu_l,...,xu } and so the throughput of the restricted

-n+1

system is [2M(n,F)]"1 . Thus

1

A(2n,1,F) 2 %M(n,F)" (2.2)

To illustrate these bounds suppose that message lengths are

exponentially distributed, with
F(x) =1 - ¢ x>0 ,

Then

=

3

)

i
il e~
bl =

1

-1 I 1 -1
} < A(2n,1,F) < l Y] . (2.3)
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Thus

A(n,1,F) = 0((logn)™h) (2.4)
where the notation g(n) = 0(h(n)) indicates that

gin) n) . o
0 < lig»inf O liﬁ»:up %TET <

Although simpler to state, the order relationship (2.4) gives a
good deal less information than the bounds (2.3). It is worth
noting that when in this paper we give order relationships such as
(2.4) they are obtained from explicit bounds such as (2.3) whose
calculation depends on the precise form of the distribution F .
The order relationship (2.4) can be generalized to values of
B other than one, and to arbitrary distributioné: the result is
as follows.
Theorem 2.1

1

A(n,B,F) = 0(g(n,F) ")

where
I~

r(n,F) = inf{K : K—IIK xdF (x) < %}

The theorem puts no conditions on the distribution F , but
care is needed in 1n;erpreting certain extreme cases. It is clear
that if F has infinite mean then A(n,B,F) = 0 and z(n,F) = «,
while if there is an upper bound M on message lengths, so that
F(M) =1 and F(x) <1 for x<M , then as n tends to infinity
»{n,B,F) decreases to a limit value not less than %M_l
(or M1 if B22).

The infimum is necessary in the definition of z(n,F) since

the distribution F may have atoms: when the function F is

continuous ¢ = z(n,F) satisfies



® =t
IC xdF (x) = 2 .
Suppose, for example,
® 2
1-F(x) = 2 J e ? /zdz R (2.5)
varw X

so that X, is distributed as |Y| where Y has a standard

normal distribution. Then

o

J xdF (x) = e-Kz/2
K

2
i

and so

Thus
¢(n,F) = 0(/logn)

and

A(n,B,F) = 0((¢logn)—1)

The following Corollaries deal with two important classes of
distribution, Corollary 2.3 includes the cxponential and normal

examples discussed above.

Corollary 2.2 If

1 - F(x) = 0(x ?)

where p>1 then

)



A(n,B,F) = 0(n~1/?)

Corollary 2.3 If

-logll - F(x)1 = 0(xP)
then

A(n,B,F) = 0((logn) /)

3. THROUGHPUT AND BUFFER SIZE

To assess the effect of increasing the buffer size B it is
necessary to obtain a further set of bounds on the throughput
A(n,B,F) . In this Section we indicate the arguments needed.

We begin by considering a system A(n,B,G) in which the
distribution G concentrates probability one on the interval
{gq,(B-1)ql . Thus the longest possible message is no more than
(B-1) times the length of the short?st possible message. For this
system the buffer at node n can never be full - even when

oo oe=X

u4B-1 = 9 node n must be empty

Xu = (B-1)g and Xu+1 = xu+2=
when message u arrives, and a time (B-1l)g later it just completes
transmission of message u as its buffer receives message u+B-1 .
Thus transmission from node n-1 1is never blocked, and an inductive
argument shows that transmission is never blocked from any node.

The throughput of this system is therefore maximal:

1

(B-1)q -
A(n,B,G) = rJ xdF(xg .

L q

For an arbitrary distribution F the throughput X(n,B,F)

can be bounded by a comparison with a system of the above form.
Message lengths generated by F which are less than g are simply

increased to q ; and, to deal with messages of length greater than



