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Preface

The second volume of “The Theory of Stochastic Processes”
is devoted mainly to Markov processes. The first and «zcond
chapters contain the general theory of Markov and '
homogeneous Markov processes. In the succeeding Chapters
the following important classes of ‘Markov. processes are
discussed: jump processes, semi-Markov processes, branching
processes and processes with independent increments. A
substantial number of the results in this volume ‘Ilre appearing
in (non-periodical) literature for the first time. |

The portion of material dealing with the theoty of Markov
processes not included in this volume such ‘as difiusion,
conditional Markov processes and some other topic: are
scheduled for incorporation in the third volume. The theory of
stochastic differential equations will also appear in this vcr ume.

L1 Gihman and A.V. Sko:ohod
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Introduction

Markov processes play a special role in the theory of random process:s. This 1.
due to the fact that the definition of a Markov process utilizes to a gr:at extent
the notions which distinguish probability theory—within the encc npassing
framework of general measure theory—as a separate independent sci:nce. The
probabilistic intuition based on the notion of independence manifests itself most
prominently in the theory of Markov processes.

Another important feature of the theory of Markov processes is the fact
that this theory allows us to describe all the finite-dimensional distrib itions of
the process in terms of a small number of constructively defined characteristics
and thus allows us to evaluate the distribution of various functicn:. s of the
process. '

Note that fcr other general classes of processes (with the exceptizn of the
class of Gaussian processes) we are able in general to define only thc ie events
whose probability is either O or 1.

Finally, the most important feature of a Markov process is the evolutionary
character of its development: the state of the process at presént completely
determines its probabilistic behavior in the future. This allows us in miny cases,
by appropriately extending the phase space of a process, to transform it into a
Markov process. On the other hand, the evolutionary character of dev:lopment
of the process permits us to derive recurrence relationships (in the discrete case)
or evolutionary equations (in the continuous case) for the determinaticn of the
probabilistic characteristics of the process.

Current investigations in the theory of random processes are to a great extent
devoted to the study of various classes of Markov processes.

The notion of a Markov process originated as a generalization of a sequence
of trials connected into a chain which was studied by A.A.Marko. Unlike
Bernoulli's scheme, Markov studied the case in which the probability of the
occurrence of an event in a subsequent trial depends on the outcome of the
previous trial. The general concept of a Markov process was given by A. N.
Kolmogorov in his paper “Uber die analytischen Methoden in der Wa' rschein-
lichkeitsrechnung” (1931), Math. Ann. 104, 415--458. In this paper, Kolinogorov
studied stochastically determined systems, i.e. systems whose probab listic be-
havior in the future is completely determined by the state of the svstem at the
present instant of time. These are described by the function P(s,x,t,B' namely
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by the probability that the system will be at time ¢ (t>>s) at one of the states of
the set BeB, where B is the g-algebra of the subsets of the phase space &, given
that at time s the system is in the state x. It follows from the formula of total
probability and stochastic determinancy that the function P(s,x,t,B)}—called
the transition probability—satisfies the following relation

P(s,x,t,By = {y P(s,x,u,dy) P(u,y,t,B) (s<u<i), '8

where 2 is the phase space of the system. This relation is called the Chapman-
Kolmogorov equation.

One of the initial problems which arises in this connection is to describe the
various classes of solutions of equation (1).

In the case in which the phase space & consists of at most a countable set
of points x,, x,,... the transition probability is determined by the collection of
functions p,(s,t)=P(s,x;,t,{x;}), where {x} is the singleton containing x;.
A.N. Kolmogorov has shown that under certain assumptions the funcuons

pijs,1) satisfy the following systems of differential equations

P S om0, D5 s .

Another important class of processes investigated by A. N. Kolmogorov is
the class of processes with finite-dimensional Euclidean phase space whose tran-
sition probabilities possess density functions p(s,x,t,y). By imposing on the
function p(s,x,t,y) certain restrictions which are in agreement with the intuitive
notion of continuous movement of a system, A. N. Kolmogorov obtained the
following equations in partial derivatives for the function p(s,x,t,y):

ap(s.x,t,y) op(s,x,t,y) 1 a%p(s,x,t.y)
T‘*’Zt"x(&x)"—&;—"" Zikbik( ) 9%,3%, =0,

op(s,x,t,y)
ot

2

0 1 i}
+ Zk ‘é‘;," (a(t, y)p(s,x,t,y)) — 7 Zi.k m (bt yIp(s,x,t,)) =0

‘ A.N. Kolmogorov also obtained equations for more general processes in

Euclidean space, whose states may vary not only continuously but also step-
wise. In all these cases, A. N. Kolmogorov succeeded in reducing the non-linear
functional equation (1) to the more common linear differential equations of the
“evolutionary type (in the case of discontinuous processes integro-differential
equations appear). The processes are, moreover, characterized by the coefficients
of the corresponding equations which have a simple probabilistic meaning and
which are infinitesimal characteristics of the process.

L G. Petrovskil and A.Ya. Khinchin utilized continuous Markov processes
for construction of the probabilistic model of diffusion. Such processes were
subsequently referred to as diffusion processes. Moreover, it was discovered that
the infinitesimal characteristics of the process introduced by A. N. Kolmogorov
allow us to determine not only the transition probabilities but also to evaluate
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the distributions of various functionals of the processes (such as the time re-
quired to reach a certain region and the distribution of the values of the process
at the moment the boundary of the region has been reached).

A. N. Kolmogorov's ideas constituted the basis of the mathematical theory
of Markov processes and provided the direction for further investigaticns such
as the description of the infinitesimal characteristics of the process and con-
struction of transition probabilities corresponding to the given infir;tesimal
characteristics. : '

. However, these infinitesimal characteristics do not always exist, an: in the
case when they do exist they do not necessarily determine the process uniquely.
In this connection, the idea proposed by W.Feller of utilizing the th:ory of
semigroups of operators associated with the transition probabilities proved to
be fruitful. The theory of semigroups of operators is particularly appli:able to
processes which are homogeneous in time, i. e. processes in which the trznsition
probability P(s,x,t,B) depends only on the difference of the arguments -5,
i.e. P(s,x,t,B)=P(t—s,x,B). This restriction is not essential, since an arbitrary
Markov process can easily be converted into a homogeneous one by an ap-
propriate modification of the phase space.

Let #5 be the space of all B-measurable real-valued bounded functic as. The
family of operators T,, determined by the relation

TS0 =] fWPxdy), feFp t>0,

is called the semigroup of operators associated with the transition prcability
P(t,x,B). This semi-group completely determines the transition probabilities.
On the other hand, this group is in many cases uniquely determined by its
infinitesimal operator A, where

Af(x)=h,g,w,

provided this limit exists for all xe4. W. Feller suggested that the infir. tesima!
operator A be considered as an infinitesimal characteristic of the pro:ess. H.
gave a description of all the diffusion processes defined on a bounded :nterva!
by means of semi-group methods. In this case, the infinitesimal operatc: of the
process is of the form

df daf
Af = xt3 b Pl
where a and b are the coefficients appearing in A. N. Kolmogorov's ¢quation
and the domain of definition of the operator A depends on the behavio- of the
process on the boundary points and is selected from the set of all twice dif-
ferentiable functions by means of certain additional (boundary) conditions.
Various additional conditions were described by W. Feller and A. D. Ver. zel.

E. B. Dynkin improved on Feller's purely analytical method by introducing
into consideration the trajectories of the process. He introduced the general
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definition of a Markov process which is commonly used nowadays and studied
in detail the strong Markovian property of the process (i. ¢. the preservation of
the Markovian property of a process with respect to a randém moment of time
which is independent of the future). E. B. Dynkin determined the characteristic
operator of the process M for a strong Markov process. If Zyis the domain of
definition of operator M, then under some very natural assumptions 2,< 9y
and Af=MUf on 9,. .

The advantage of the characteristic operator over the infinitesimal one is
due to the fact that for computing the characteristic operator it is sufficient to
know the behavior of the trajectory up to the instant of time at which the
trajectory leaves an arbitrary small neighborhood of the initial point (including
this instant). Therefore the characteristic operator is easily computable in many
cases (for example in the case of jump processes and continuous processes on
the line). Therefore, if the characteristic operator is known, then in order to
determine the infinitesimal operator it is sufficient to find the domain of its
lefinition @, which is the contraction of Yyand which is consequently selected
rom Zyby means of certain addxtxona] (boundary) conditions. As we can see,
the situation in the general case is similar to that which exists in the case of a
diffusion process on the interval.

The general problem of describing the, du;nam of dcfmmon of an infini-
tesimal operator corresponding to a given Maracteristic operator remains as
yet unsolved. It was discovered. that the solution of this problem is connected
with the study of harmonic and excessive functions of the process which was
investigated by G.A. Hunt. On the other hand, the notions of multiplicative
and . additive functlonals—mtroduced by E.B. Dynkm—whlch ar¢ also con-
nected with the notion of an excessive function are of great importance for the.
construction of various transformations of the pche,sses (such transformatxons
may significantly simplify the study of the processes). The study of excessive
“unctions and additive and multiplicative functionals of a process constitutes at
.resent a substantial part of the general theory of Markov processes. This theory
vas presented for the first time in rather complete form in E B. Dynkin’s mono-
araphs “Basic notions-of the theory of Markov processes” and “Markov proc-
esses .

Slmultaneously thh thc dcvelopm,ent of the, general theory, a detanled in-

-estigation. was undertaken of varipus partncular classes of Markov processes
with more specific properties. We shall mention a few of the most important
of these classes.

Processes with mdependent mcrements, ie. processes &(t) for which the
variables

-£(0), C(ll)--é(o), i(t) ‘(t.. 1) 0<tx<lz< <,
are mdependem for ‘any a and t,,tz, ., “constitute an -important- class of

Markov -processes. These processés can be viewed as continuous-time random
walks.' They were originally utilized for the description -of Brownian motions.

* English trahslalion 1965
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The general processes of this class are utilized as evolution models of :rbitrary
systems in a (spatial) homogeneous random medium. Stochastically continuous
processes with independent increments were comprehensively describe:d in the
the works of B.de Finetti, A. N. Kolmogorov and P. Levy. From the point of
view of the general theory, processes with independent increments are spatially
homogeneous Markov processes.

In addition to an analytic description of distributions of the proce:ses with
independent increments, the properties of the sample functions (paths) of these
processes were also studied. P. Lévy has’ shown that stochastically corntinuous
processes with independent increments have no discontinuities of the second
kind. A.Ya. Khinchin studied the local growth of processes with independent
increments and in particular, he derived the well known law of iterated logiarithms.

To describe the size of biological populations F. Galton and H. W. Wa' ;on sug-
gested a certain random process. A. N. Kolmogorov and N. A. Dmitricv intro-
duced a special class of Markov processes with a countable number of states
which they called branching processes. Subsequently, these processes hacl numer-
ous applications in biology and physics for a description of systems with birth,
extinction and transformation of species (or particles). The state of a b:"anching
process in a given instant of time is determined by the number of pa:-icles of
each type which are present in the system (for example the number of species
of each sex in a biological population). Each particle is subject to a transfc ‘mation
as a result of which the particle either disappears, or is replaced by other particles
of arbitrary types and in arbitrary numbers. If the further evolution of a particle
present in the system is independent of its age and of the evolution of oiaer par-
ticles, the process becomes a Markov branching process. The infinitesimal charac- |
teristics of the process are the extinction probabilities or the probability of
transformation of a particle of each type—during an infinitesimal period of
time—into a collection of (other) particles. By means of these chara:teristics
one can write differential equations for the generating functions of the number
of particles present in the system.

It is of interest to study the asymptotic behavior of the number of particles
in the system as t—co and in particular the calculation of the probab lities of
disappearance of all particles from the systém (its degeneration) as weil as the
probabilities that their number increases indefinitely (explosion). -

For a more accurate description of real-world systems, it is natura to con-
sider branching processes in which the transformation probabilities depend on
the age of the particles. This can be achieved by introducing a phase space in
which the position of the particle is subject to change and moreover, tte prob-
abilities of transformation of a particle may depend on its position in tte phase:
space. In this manner one arrives at the general definition of a Markov branching
process whose state is determincd by the number of particles of each type as
well as by their position in a certain phase space, and moreover, the movement
of each particle in the phase space is described by a Markov process with tran-
sition probabilities depending only on the type of the particle.

Another interesting generalization of a branching process is obtain«1 in the
case when the type of particle is characterized not by number but mass 25suming
that the latter varies continuously. The development of the theory o' general
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branching processes is a recent one¢ and only initial results have been obtained
related to the determination of infinitesimal characteristics of the process and
construction of a process on the basis of these characteristics.

A large number of papers including those of an applied nature, are devoted
to queueing theory problems. A queueing system is characterized by an incoming
stream of customers (demands), the number of servers and the service time of
a customer by each one of the servers. If the stream of customers is Poisson and
the service times are exponentially distributed, then such a queueing system is
described by a Markov process with a countable number of states. To describe
a more general queueing system a special class of Markov processes is utilized.
A semi-Markov process has a countable number of states and the transition
probabilities depend on the duration of stay in a given state. If the state of the
system is described by the pair, the state of the semi-Markov process and the
duration of stay in this state, the system becomes Markovian. The basic problems
of the theory of semi~-Markov processes which follow from the nature of their
applications are the calculation of transition probabilities, stationary distribu-
tions in the phase space and determination of conditions for applicability of the
ergodic theorem.

A natural generalization of semi-Markov processes is the general process
with a discrete chance interference: This is a process which is Markovian between
two consecutive interferences of the chance. The effect of the interference is that
the process suddenly changes its state in the phase space (in a non-Markovian
manner), while the pair-—the state of the process and the duration of time from
the instant of the last chance interference-—is a Markov process.

The present volume is completely devoted to the theory of Markov processes.
The general theory as well as the most important classes of Markov processes
are studied in this volume. Diffusion processes, however, will be investigated in
detail in the third volume.

Chapter 1 deals with the general definitions of a Markov process, of a Markov
random function, and the strict Markov property of the process. In this chapter
the criterion for the strict Markov property is established and multiplicative
functionals and subprocesses of a Markov process are studied as well as the
properties of sample functions. Markov processes in the wide sense are studied
before the general theory is presented. (The theory of wide-sense Markov processes
does not involve the notion of sampie function of the process.) Kolmogorov's
equations for various classes of processes are derived as well.

Chapter I is devoted to homogeneous Markov processes. Here the semi-
group corresponding to a Markov process is introduced, resolvent and gener-
ating operators of a process are discussed and the Hille-Yosida theorem on the
existence of a semigroup with a given generating operator is proved. A sub-
stantial part of the second chapter is devoted to the study of Feller processes in
compact and locally compact spaces. The conditions are derived under which
a given operator is a characteristic operator of a Feller process in a locally
compact space, and all the processes with a given characteristic operator are
described. Additive functionals of a Markov process are studied. A description
of all continuous additive functionais of Feller processes is obtained and the
random substitution of time is consicturad.
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Chapter Il is devoted to jump processes. A general definition of these
processes is given and their structure is investigated. Also studied are h:moge-
neous processes with a countable number of states, semi-Markov pr.cesses,
processes with a semi-Markov chance interference and general processes with a
discrete chance interference. Characteristic and generating operators fci' these
processes are obtained and the ergodic theory is proved. Moreover, Markov
processes with a discrete component are investigated and their charac:eristic
operators are obtained.

Processes with independent increments are studied in Chapter IV. Here the
properties of sample functions of these processes are investigated as iveli as
their local growth and the growth at infinity. For a one-dimensional pro«:ss the
distributions of the basic functionals of the process are obtained, such as the
first passage time of a certain level, the size of the jump through this livel as
well as the joint distributions of the supremum, infimum and the value of the
process. A certain class of non-negative continuous additive functionals of a
process is described.

Chapter V deals wit Markov branching processes. Branching processe:: with a
finite number of types of particles, processes with a continuous mass and yeneral
Markov branching processes are studied.

In many cases the main text does not contain references to the original papers.
To a certain extent this is done in the Remarks at the end of the book In the
bibliography the authors tried to list all the basic papers on the theory of hvMarkov
processes dealing with problems discussed in this book.



Chapter 1

Basic Definitions and Properties of Markov Processes

§ 1. Wide-Sense Markov Processes

Definition. The idea of a process “without an aftereffect” is the underlying char-
acteristic of a Markov process. Consider a system (or a particle) which may be
found in various states. The possible states of the system form a set 4 called the
phase space of the system. Assume that the system changes in time. The state
of the system at time ¢ is denoted by x,. If x,e B, where Bc X, we say that the
system at time ¢ is situated in the set B. Assume that the evolution of the system
is of a stochastic nature, i. €. the state of the system at time ¢ is, in general, not
uniquely determined by the states of the system at the times preceding time s,
where s<t, butis random and is described by certain probabilistic laws. Denote
by P(s,x,t,B) the probability of the event x,eB (s<t) given that x,=x.

The function P(s,x,t,B) is called the transition probability of the given system.
A system is termed without an aftereffect if the probability of its being situated
at time ¢ in the set B, under the condition that the movement of the system up
to time s (s<t) is completely known, equals P(s,x,t,B) and thus depends only
on the state of the system at time s. A complete formal definition will be given in
succeeding sections. Here we present a simple definition of this concept which is
sufficient for a number of applications. Denote by P(s,x,u,y,t,B) the conditional
probability of the event x,eB under the assumptions x,=Xx, x,=y (s<u<t).
From the general properties of conditional expectations we have

P(s,x,t,B) = {4 P(s,x,u,y,t,B) P(s,x,u,dy). 1)

For a system without an aftereffect P(s,x,u,y,t,B)=P(u,y,t,B). In this case
equality (1) becomes

P(s,x,t,B) = {4 P(u,y,t, B)P(s,x,u,dy) (s<u<t). )

Equation (2) is called the Chapman-Koimogorov equation. It may serve as the
basis for a definition of a process without aftereffect; such a process will be
referred to in what follows as a Markov process.

Let {Z,B} be a measurable space. The function P(x,B), xe &, BeB, satis-
fying the conditions
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a) For a fixed x P(x,B) is.a measure on B and P(x,%)<1,
b) for a fixed B P(x,B) is a B-measurable function of x,

is called a semi-stochastic kernel. If P(x,Z)=1 for all xe%, then P(: B) is
called a stochastic kernel.

This terminology will be used also in a somewhat more general case, when
the argument x of the function P(x,B) takes on values in a measurable space
{Zp,B,) different from {Z,B}.

Let # be a finite or infinite half-interval. A family of semi-stochast: (sto-
chastic) kernels

(P,(x,B)=P(s,x,t,B), s<t, (s, )€ 5 x I}

satisfying Chapman-Kolmogorov equations is called a Markov family ¢i semi-
Stochastic (stochastic) kernels.

Definition 1. A wide-sense Markov process is a collection of the following o bjects:

a) a measurable space {Z, B},
b) an interval # (half-interval, segment) on the real line,
c) a Markov family of stochastic kernels

{P,(x,B),s<t,(s,)e S x F}.

The family of kernels P, (x,B)=P(s,x,t,B) is called the transitior prob-
ability of a Markov process, the space {¥,B} is called the phase spac: of the
system, the points of # are interpreted as the instants of time, and the ¢juantity
P,(x,B)=P(s,x,t,B) as the conditional probability that the system at time ¢
be situated in B given that at time s it was situated at point x of the pha:: space
(s<1).

Henceforth, we shall agsume that the kernel F,(x,B) is defined also for
s=t. Namely, it is natural to define

B.(x,B)= x(B,X),

where x(B,x) denotes the iéiﬁéator of the set B: yx(B,x)=1 if xe¢B and
x(B,x)=0 if x¢B. - oo o

Clearly, equality (2} is satisfied with u=s or u=t for such a defir. tion of
the kernel P,(x,B).

The Chapman-Kolmogorov equation shows that the kernel P,(x,B is the
convolution of the kemels P, (x,B) and P(x,B) (s<u<!). The definition of a
convolution of kernels was given in Volume L.

Cut-off Markov Processes. In what follows, we shall consider Markov processes
defined by stochastic as well as semi-stochastic kernels. In the latter «ase the
relation P(s,x,t,Z}<1 can be naturally interpreted as the possibility of the
disappearance of the system from the phase space. Moreover, if x,=:, then
the probability of disappearance p(s,x,t) of the system during the time inter-
val (s,f] is set to be equal to 1—P(s,x,t,%). Note that it follows from the
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Chapman-Kolmogorov equation that p(s,x,t) is a non-decreasing function of ¢.
Indeed for h>0

P(s,x,t+h,Z)={ P(s,x,t,dy)P{t,y,t+h,T) < {P(s,x,t,dy) = P(s,x,t;ﬂ”). '

The possibility of such an interpretation of the relation P(s,x,t,¥)<1 is
based on the following argument. The disappearance of the system from the
phase space is interpreted as its reaching a certain special state v, o¢2. We
extend the space ' by adjoining to it the new point o and denote the extended
space by %,. We introduce in %, the o-algebra B, consisting of all possible sets
Be®B and the sets of the form Bu{v}, Be®B. We complete the definition of
the function P(s,x,t,B) for xe%, and BeB,, by setting

P(s,x,t,B) = P(s,x,t,B\{o})+x(B,0)p(s,x,t) for x#bv
and
P(s,0,t,B) = x(B,v).

Lemma 1. The family of stochastic kernels B(s,x,t,B) (sef,te s, .§<t), xeq,,
BeB,, is Markovian.

To prove the lemma it is sufficient to verify that P satisfies the Chapman-
Kolmogorov equation. We have

B(s,v,t,B) = B(s,0,u,{0}) P(u,0,t, B)
= {y, P(s,0,u,dx)P(u,x,t,B), BeB,s<u<t.

If BeB, xe&, then
P(s,x,t,B) = P(s,x,t, B) = [y P(s,x,u,dy)P(u,y,t, By = I'frr.f(g',;c,u,dy)l.’(u, y,t,B).

Now let xeZ, B,e®B, B=B,u{v}. Then a

P(s,x,t,B)=P(s,-x,t,Bo)+P(is,x,!t;:{’qgé){f fir_‘t zamnab [
= {y P(s,x,u,dy)P(u,y,t,Bo)+ P(s, x,t,{#})..
But I
P(s,x,t,{v}) =1 ~P(s,x,t,%) =1 — fg P(s,x,u,dy) P(u,y,t,%)

=1~ [y P(s,x,u,d))Pu,y,t, %) = |4 P(s,x,u,dy)P(u,y,t,{v}).
Therefore

P(s,x.t,Bou{0}) = [y, P(s.x,u,dy)P(u,y,1,Bo) + f ¢, P(s,x,u,dy) P(u,y,t,{0})
= [g, B(s,x,u,dy) Pu,y,1, Bou{v}).

The lemma is thus proved. 0
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Although, as it was just shown, the case of a Markov family >f semi-
stochastic kernels can be rather casily reduced to the case of a Markov family
of stochastic kernels, nevertheless the addition of a new point to the ph:se space
changes its topological structure. It is therefore meaningful to distinguist between
these two cases.

Definition 2. A system of objects consisting of the phase space {%.B},
a time half-interval # and a Markov family of semi-stochastic kernels
{P(x,B),s<t,(s,)ef xF} in {¥,B) is called a wide-sense cut-off Markor
process. (The word “cut-off” indicates the possibility of the disappearar :e of the
system from the phase space (the cut-off of the process).) If, however, P, 4)=1,
such a process is called non-cut-off .

Input distribution of a Markov process. In this section only wide-sense Markov
processes are studied. For this reason the words “wide-sense” will often be
omitted. We return to the definition of a Markov process given above (cut-off
or non-cut-off), and pote that these definitions in general do not stipujate that
the probability of the event {x,e B} be defined.

However, if we define on B (or on B,) a probability measure g, and assume
that P{x,eB}=gq,(B), then for t>s it follows from the general fornulas of
probability theory that the probability g,(B) of the event {x,eB} should be
defined as

4,(B) = P{x,e B} = [ P(%;x,t,B)q,(dx). 3)

This definition is meaningful in the following sense:

Compute the quantities g, and q, (s<u<t) using formula (3), and then set
s=u, g,=¢, in (3) and compute ¢, again. The measures g,, computed uving dif-
ferent methods, will coincide. More precisely, if the operation which constructs
g, by means of formula (3) for given r, s and ¢,=¢ is denoted by g, =F(s.g)
then for any ue(s,t)

9 = F(,q.) = E(w,E(s.9). , @

To prove this assertion the following simple lemma will be needed.

Let {Z,%8;} (i=1,2) be two measurable spaces, let m be a measurc on B,
and let gq(x,B) (xe%,,BeB,) be a semi-stochastic kernel.

Set

q(B) = {4, g{x, Bym(dx).

Clearly g(B) is a measure on B, and moreover q(B)<m(Z,).

Lemma 2. If the measure m is finite, we have for an arbitrary bourled and
B,-measurable function f(y)

§aymdx) §o, (M a(x.dy) = [g, F(V)q(dy). (5)

Proof. Denote by K the class of functions for which (5) holds. The class K
contains the indicators of sets in B, and being linear, it thus contain: all the



