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Chapter

BACKGROUND
AND PREVIEW

J

1.1 INTRODUCTION

Control theory is often regarded as a branch of the general, and somewhat more
abstract, subject of systems theory [117].* The boundaries between these disciplines
are often unclear, so a brief section is included to delineate the point of view of this
book.

In order to put control theory into practice, a bridge must be built between the
real world and the mathematical theory. This bridge is the process of modellpg, and
a summary review of modeling is included in this chapter [15, 109].

Control theory can be approached from a number of directions. The first sys-
tematic method of dealing with what is now called control theory began to emerge
in the 1930s. Transfer functions and frequency domain techniques were predominant
in these “classical” approaches to control theory. Starting in the late 1950s and early
1960s a time-domain approach using state variable descriptions came into prominence.
This is what this book refers to as “modern” control theory. At the present time there
is a blurring of the boundaries and a merging of these methods, along with new devel-
opments, into a unified theory. However, distinctions still exist, including the types of
systems that can be dealt with efficiently, the forms of the system models, the methods
of analysis, and even the philosophies that underlie the methods of design and analysis.
Some of these distinctions are discussed in this chapter. A very br'ef look at the basic
parts of classical theory will be reviewed in the next chapter. After that, the great
majority of this text will be aimed at the state variable method. Bridges between the .
two will be built at several points throughout the boqok as seems appropnate.

*Reference citations are given numerically in the text in brackets. The references are in a single
section at the end of the book, v .
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‘1.2 SYSTEMS, SYSTEMS THEORY,
AND CONTROL THEORY

According to the Encyclopedia Americana, a system is “. . . an aggregation or assem-
blage of things so combined by nature or man as to form an integral and complex
whole . . . .” Mathematical systems theory is the study of the interactions and behavior
of such an assemblage of “things” when subjected to certain conditions or inputs. The
abstract nature of systems theory is due to the fact that it is concerned with mathe-
matical properties rather than the physical form of the constituent parts.

~ Control theory is more often concerned with physical applications. A control
system is considered to be any system which exists for the purpose of regulating or
controlling the flow of energy, information, money, or other quantities in some desired
fashion. In more general ferms, a control system is an interconnection of many com-
ponents or functional units in such a way as to produce a desired result. In this book
control theory is assumed to encompass all questions related to design and analysis of
control systems.

Figure 1.1 is a general representation of an open-loop control system. The input
or control u(¢) is selected based on the goals for the system and all available a priori
knowledge about the system. The input is in no way influenced by the output of the
system, represented by y(). If unexpected disturbances act upon an open-loop system,

“or if its behavior is not completely understood, then the output will nov behave pre-
clsely as cxpected. :

Another general class of control systems is the cIosed-loop or feedback control
system, as illustrated in Fig. 1.2, In the closed-loop system, the control u(z) is modified
in some way by information.about the behavior of the system output. A feedback
system is ofter better able to cope with unexpected disturbances and uncertainties
about the system’s dynamic behavior. However, it need not be true that closed-loop
control is always superior to open-loop control. When the measured outputs have

. errors which are sufficiently large, and when unexpected disturbances are relatively
unimportant, closed-loop control can have a performancc which is inferior to open-
loop control

Disturbances
Disturbances ’ 9.?1'3.4 Control u(s) The y(1)
J L ' law system —
" Goals | Control | u{s) | The y(1)
law 71 system
Sensors -
~ Measurement errors
Figure 1.1 An open-loop control system. Figure 1.2 ‘A closed-loop control system.

¥ *\\
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Example 1.1

A man’s goal is to provide as much financial security as possible for his retirement years.
He decides to have an extra $300.00 pér month deducted from his paycheck and deposited
in a tax sheltered annuity. His “input™ each month is u(f) and the system output y(¢) is the
accrued value in his account. Since u(¢) is in no way aﬂ‘ected by the current economic climate
or by »(¢), this is an open-loop system. Soods |

Example 1.2 e o

Another man has the same goal of achnevmg ﬁnanclal security. He decides to directly
control his investments in the stock market. His input u(¢) at any given time is influenced by
his perception of the market conditions, how well he has done so far, and so forth. Thisis a
feedback or closed-loop system. i -

Example 1.3

A typical industrial control system involves components from several engineering dis- -
ciplines, The automatic control of a machine shown in Fig,. 1.3 illustrates this. In this exampley ’
the desired time history of the carriage motion is. patterned into the shape of the can. As the
cam-follower rises and falls, the potentiometer pick-off voltage is proportional to the desired
carriage position. This signal is compamd with the actual position, as sensed by another
potentiomieter. This difference, perhaps modified by a tachometer-generated rate signal, gives
rise to an error signal at the output of the differential amplifier. The power level of this signal
is usually low and must be amplified by a second amplifier before it can be used for corrective
action by an electric motor or a servo valve and a hydraulic motor or some other prime mover.
The prime mover output would usually be modified by a precise gear train, a lead screw, a
chain and sprocket, or some other mechanism. Clearly, mechanical, electrical, electronic,

and hydraulic components play important roles in such a system. o B
. External .
'l'—_-'-'s e,l‘l:rgy Gear : Moving tool
source box carriage
Differential Power v vl v v
= amplifier amplifier I Lead
Prime screw
mover | .{ Tach I :
_ i Tool
AL R R bit
‘ |
T ‘
i
. » |
Position feedback I

Figuve 1.3
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Example 1.4

The same ultimate purpose of controlling a machine tool could be approached some-
what differently using a small computer in the loop. The continuous-time or analog signals
for position and velocity must still be controlled. Measurements of these quantities would
probably be made directly in the digital domain using some sart of optical pulse counting
circuitry. If analog measurements are made,. then an analog-to-digital (A/D) conversion is
necessary. The desired position and velocity data would be available to the computer in
numeric form. The digital measurements would be compared and the differences would con-
stitute inputs into a corrective control algorithm. At the output of the computer a digital-to-
analog (D/A) conversion could be performed to obtain the control inputs to the same prime
mover as in Example 1.3. Alternately, a stepper motor may be selected because it can be
directly driven by a series of pulses from the computer. Figure 1.4 shows a typical control

system with a computer in the loop. [ |
Continuous
, . outputs
Numeric Continuous
inputs —->' Computer D/A system
i

A/D

Figure 1.4

1.3 MODELING

Engineers and scientists are frequeritly confronted with the task of analyzing problems

in the real world, synthesizing solutions to these problems, or developing theories to -

explain them. One of the first steps in any such task is the development of a mathe-
matical model of the phenomenon being studied. This model must not be oversim-
plified, or conclusions drawn from it will not be valid in the real world. The model
should not be so complex as to complicate unnecessarily the analysis.

System models can be developed by two distinct methods. Analytical modeling
consists of a systematic application of basic physical laws to system components and
the interconnection of these components. Experimental modeling, or modeling by
synthesis, is the selection of mathematical relationships which seem to fit observed
input-output data. Analytical modeling is emphasized here. Some aspects of the other
approach are presented in Chapters 5, 11, and 13 (least-squares data fitting).

An outline of the analytical approach to modeling is presented in Fig. 1.5. The
steps in this outline are discussed in the following paragraphs.

1. The intended purposes of the model must be clearly specx_'ﬁed. There is no single
model of a complicated system which is appropriate for all purposes. If the pur-
pose is a detailed study of an individual machine tool, the model would be very
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different from one used to study the dynamics of work flow through an entire

factory.

The system boundary is a real or imagined separation of the part of the real world

under study, called the system, and the rest of the real world, referred to as the
environment. The system boundary must enclose all components or subsystems
of primary interest, such as subsystems A, B, and C in Fig. 1.5a.

S

—

e
e

The

/

Purpose of the
model

environment

:

Define boundaries

~
The
system  \ {/‘

!

\
\

V

Postulate a structuyre
which mimics observed
or desired effects

Sy

Ss

‘\\/v
|

|

|

l

|

Ss

(a) A portion

!

v

Specify vaﬁables
of interest

:

7

Develop mathematical
description of each
model element

!

v

Apply physical laws
of continuity and
compatibility

1

7

Manipulate
equations

:

P

Final form of
mathematical model

Modify model
if nécessary

1

t

4

of the

real world

Analyze, compare
with real world

T

(b) Steps in modeling

Figure 1.5 Modeling considerations.
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A second requirement on the selection of the boundary is that all causative
actions or effects (called signals) crossing the boundary be more or less one-way
interactions. The environment can affect the system, and this is represented by the
input signal §;. The system output, represented by the signal S,, should not affect
the environment, at least not to the extent that it would modify S,. If there is no interest
in subsystem A, then a boundary enclosing B and C, and with inputs S, and S,, could
be used. Subsystem C should not be selected as an isolated system because one of its
outputs S; modifies its input S, through subsystem B. The requirement is that all
inputs are known, or can be assumed known for the purpose of the study, or can be
controlled independently of the internal status of the system.

Example 1.5

The purpose of the models of Fig. 1.6 is to swudy the flow of work and information
within a production system due to an input rate of orders. These orders could be an input
from the environment, as in Model I. If the purpose is to study the effects of an advertising
campaign, then orders are determined, at least in part, by a major system variable. In this

case the rate of orders should be an internal variable, as in Model 1I. | ]
External
effects )
Production | Output Response to Orders Production Output
system | > advertising system g
Advertising %
(a) Model 1 (b) Model 11
Figure 1.6 )

3. All physical systems, whether they are of an electrical, mechanical, fluid, or thermal
nature, have mechanisms for storing, dissipating, or transferring energy, or trans-
Jorming energy from one form to apother. The third step in modeling is one of
reducing the actual system to an interconnection of simple, idealized elements
which preserve the character of these operations on the various kinds of energy.
An electric circuit diagram illustrates such an idealization, with ideal sources

. representing inputs. In mechanical systems, idealized connections of point
masses, springs, and dashpots are often used. In thermal or fluid systems and to
a certain extent in economic, political, and social systems, similar idealizations
are possible. This process is referred to as physical modeling. The level of detail
required depends on the type of information expected from the model.

4. If the physical model is properly selected, it will exhibit the same major char-
acteristics as the real system. In order to proceed with development of a mathe-
matical model, variables must be assigned to all attributes of interest. If a quantity
of interest does not yet exist and thus cannot be labeled, a modification will be
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required in Step 3 so as to include it. The classification of system types is dis-
- cussed in the next section. This bcok deals mainly with deterministic lumped-
parameter systems. In all lumped-parameter systems there are basically just two
types of variables. They are through variables (sometimes called path variables
or rate variables) and across variables (sometimes called point variables or level
variables). Through variables flow through two-terminal elements and have the
same value at both terminals. Examples are electric current, force or torque,
heat flow rate, fluid flow rate, and rate of work flow through a productioffjele-
ment. Across variables have different values at the two terminals of a device.
Examples are voitage, velocity, temperature, pressure, and inventory. level.

5. Each two-terminal element in the idealized physical model will have one through
and one across variable associated with it. Multiterminal devices such as trans-
formers or controlled sources will have more. In every device, mathematical
relationships will exist between the two types of variables. These relationships,
called elemental equations, must be specified for each element in the model. This
step could uncover additional variables that need to be introduced. This would
mean a modification of Step’'4. Common examples of elemental equations are

~ the current-voltage relationships for resistors, capacitors, and inductors. The
form of these relations may be algebraic, differential, or integral expressions,
linear or nonlinear, constant or time-varying.

6.  After a system has been reduced to an interconnection of idealized elements, with
known elemental equations, equations must be developed to describe the intercon-
nection effects. Regardless of the physical type of the system, there are just two
types of physical laws that are needed for this purpose. The first is a statement
of conservation or continuity of the through variables at each node where two or
more elements connect. Examples of this basic law are Kirchhoff’s node equa-
tions, D’Alembert’s version of Newton's second law, conservation of mass in
fluid flow problems, and heat balance equations. The second major law 1s a
compatibility condition relating across variables. Kirchhoff’s voltage law,around
any closed loop is but one example. Similar laws regarding relative velocities,
pressure drops, and temperature drops must also hold. Both of these laws yield
linear equations in through or across variables, regardless of whether the ele-
mental equations are linear or nonlinear. This fact is responsible for the name -
given to linear graphs, an extremely useful tool in applying these two laws.

Example 1.6

Consider the system with six elements, including a source v, shown in Fig. 1.7, Each
element is represented as a branch of the linear graph, and the interconnection points are
nodes. Each node is identified by an across variable v, and each branch has a through
variable, called f;, with the arrow establishing the sign convention for positive flow. Let

b(number of branches) = 6
s(number of sources) =1
n(number of nodes) =4



