a course on the molecular and cellular basis of immunity M.J. HOBART & IAN McCONNELL # THE IMMUNE SYSTEM # a course on the molecular and cellular basis of immunity M.J. HOBART IAN McCONNELL MA, PhD, VetMB Lecturer in Immunology MA, PhD, BVMS Senior Lecturer in Immunology Royal Postgraduate Medical School, London (内部交流) BLACKWELL SCIENTIFIC PUBLICATIONS OXFORD LONDON EDINBURGH MELBOURNE 120 © 1975 Blackwell Scientific Publications Osney Mead, Oxford 85 Marylebone High Street, London, W1M 3DE 9 Forrest Road, Edinburgh P.O. Box 9, North Balwyn, Victoria, Australia All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of the copyright owner. ISBN 0 632 00157 7 First published 1975 Distributed in the United States of America by J. B. Lippincott Company, Philadelphia and in Canada by J. B. Lippincott Company of Canada Ltd., Toronto. Printed in Great Britain at The Alden Press, Oxford and bound by Kemp Hall Bindery, Oxford #### **Contributors** **Peter Alexander** Chester Beatty Research Institute, Sutton, Surrey Susan Bright Department of Pathology, University of Cambridge **David Brown** Royal Postgraduate Medical School, University of London Max Cooper University of Alabama Medical Center, Birmingham, Alabama Peter Démant Institute of Experimental Biology and Genetics, Czechoslovak Academy of Science Arnold Feinstein A.R.C. Institute of Animal Physiology, Babraham, Cambridge Hilliard Festenstein Tissue Immunology Unit, London Hospital Medical School Rodney Harris Department of Human Genetics, University of Manchester Medical School Mike Hobart Royal Postgraduate Medical School, University of London Peter Lachmann Royal Postgraduate Medical School, University of London Ian McConnell Royal Postgraduate Medical School, University of London Alan Munro Department of Pathology, University of Cambridge Christopher Spry Royal Postgraduate Medical School, University of London Colin Stern Royal Postgraduate Medical School, University of London Michael Taussig Department of Pathology, University of Cambridge Helgi Valdimarsson Royal Postgraduate Medical School, University of London ### **Acknowledgements** The Editors and Publisher are grateful to the following for permission to reproduce copyright material: #### Academic Press: Advances in Cancer Research, Fig. 16.2; Advances in Immunology, Fig. 1.4; Cellular Immunology, Fig. 11.5. The American Association for the Advancement of Science: Science, Fig. 4.6, Fig. 4.7, Fig. 11.1. The American Association of Pathologists and Bacteriologists: American Journal of Pathology, Fig. 13.2. The American Chemical Society: Biochemistry, Fig. 3.8; Journal of the American Chemical Society, Fig. 4.1a. American Society for Clinical Investigation: Journal of Clinical Investigation, Fig. 5.7. Blackwell Scientific Publications: Handbook of Experimental Immunology, Fig. 14.2; Clinical & Experimental Immunology, Fig. 10.3, Fig. 14.4a; Immunology, Fig. 9.10, Fig. 10.2, Fig. 14.4. Cambridge University Press: Journal of Physiology, Fig. 3.11, Fig. 3.13, Fig. 5.5. Cold Spring Harbor Laboratory of Quantitative Biology: Fig. 8.2. McMillan Journals Ltd.: Nature, Fig. 14.8. MTP-Butterworth: Defence and Recognition, Fig. 2.1, Fig. 2.2, Fig. 16.3. National Academy of Sciences of the U.S.A. (Proceedings): Fig. 3.7, Fig. 4.4. New York Academy of Sciences (Annals): Fig. 3.3, Fig. 3.4, Fig. 3.5, Fig. 4.2, Fig. 4.3. North-Holland Publishing Company: Progress in Immunology II, Fig. 3.12, Fig. 3.13b, Fig. 17.1, Fig. 17.2; The Principles of Human Biochemical Genetics, Fig. 6.2b. Pergamon Press: Progress in Biophysics and Molecular Biology, Fig. 1.2. xxi Plenum Publishing Corp.: Microenvironmental Aspects of Immunity, Fig. 13.3: Prentice Hall Inc.: The Cells and Tissues of the Immune System, Fig. 14.3, Fig. 14.5. The Rockefeller University Press: Journal of Experimental Medicine, Fig. 1.5, Fig. 7.7, Fig. 9.12, Fig. 16.1, Fig. 16.5. The Royal Society of London (Proceedings): Fig. 8.1. Springer-Verlag: Current Topics in Microbiology and Immunology, Fig. 11.3, Fig. 11.6, Table 11.2, Table 11.3. The Williams and Wilkins Company: Journal of Immunology, Fig. 11.2. #### Advice to readers This book has been edited to present data at a rather high density. Most people will find it necessary to read slowly and to be sure that they understand at each stage. We have included three 'aids' for the reader: Appendices, Glossary and Preambles. Appendix A gives the classification of allergic tissue damage according to Coombs and Gell (1963), a classification which is used throughout this book and which is recommended by the Editors. Appendix B is a guide to the genetic terms used in the book. Most of our readers will have heard of these, but many will retain only a hazy memory of them. The terms have precise meanings which represent real distinctions. Any reader finding himself 'out of his depth' on genetic matters should read Appendix B in an attempt to restore his understanding. The Glossary attempts to provide accurate, exemplary or pungent definitions for the special terms used in immunology. Consult it if you are not fully happy about the meaning of a term. The book is divided into four sections covering Immunochemistry, Immunobiology, Immunogenetics and Immunopathology. Each section is preceded by a Preamble providing a directory of what is to be covered and in the cases of Sections II and III some background information. Chapter 1 is a species of signed preamble on immunoglobulin structure! Readers with some knowledge of immunology may find these preambles unnecessary. ## EDITORS' PREFACE, xix ADVICE TO READERS, xxiii | I | IMMUNOCHEMISTRY | |---|--------------------------| | | Preamble to Section I, 1 | | 1 | IMMUNOGLOBULINS AS PROTEINS, 2 M. J. HOBART | |---|--| | 1.1
1.1.1 | Introduction, 2 Basic anatomy, 2 | | 1.2
1.2.1
1.2.2
1.2.3
1.2.4
1.2.5
1.2.6 | Heterogeneity of immunoglobulins, 3 Light chain types, 3 Heavy chain classes, 6 Subclasses of chains, 6 Allotypes, 6 Idiotypes, 8 Other polypeptide components of immunoglobulins, 9 | | 1.3
1.3.1
1.3.2 | The variable region, 9
V-region subgroups, 9
Hypervariable regions, 11 | | 1.4
1.4.1
1.4.2
1.4.3 | Biological activities, 11
Complement fixation, 11
Transfer across membranes, 12
Cell-binding immunoglobulins, 13 | | 1.5
1.5.1
1.5.2
1.5.3. | Integration and biosynthesis, 13 Allelic exclusion, isotypic and idiotypic selection, 14 Integration, 14 Synthesis, assembly and secretion, 14 | | 2 | GENETICS OF IMMUNOGLOBULIN DIVERSITY, 16 A. J. MUNRO | | 91 | Introduction 16 | The distinction between alleles and tandem genes, 16 The number of variable region genes: arguments from proteins, 19 How many 'genes' do we 'need'?, 19 How many proteins do we make?, 19 2.4.1 Linkage, 16 Alleles, tandem genes and linkage, 16 Arrangement of immunoglobulin genes, 17 2.2 2.2.1 2.2.2 2.3 2.4 vii 2.4.2 2.5 Germ line versus somatic mutation, 20 **Contents** | viii | Contents | |---|--| | 5.7 | Summary, 74 | | 5.6 | Kinetics, 73 | | 5.5
5.5.1 | The complement lesion on membranes, 71
The lytic event, 73 | | 5.4
5.4.1
5.4.2 | The terminal complement sequence, 70
Reactive lysis, 70
Generation of the lytic lesion, 70 | | 5.3.1
5.3.2
5.3.3 | The C3 step, 67
Activation, 67
Inactivation, 67
Control of C3 biosynthesis, 68 | | 5.2
5.2.1
5.2.2
5.2.3
5.2.4 | The generation of C3 converting enzymes 59 The 'classical' C3 convertase, 59 The 'alternative pathway', 59 The C3b feedback cycle, 64 The cobra venom factor, 65 | | 5.1
5.1.1
5.1.2
5.1.3
5.1.4 | Introduction, 56 History, 56 Glossary of complement terminology, 56 The complement components, 57 The activation of the complement system, 57 | | 5 | THE IMMUNOCHEMISTRY OF COMPLEMENT, 56 P. J. LACHMANN | | 4.4
4.4.1
4.4.2
4.4.3 | The structure of the combining site, 51 Sequence information, 51 Affinity labelling, 51 X-ray diffraction data, 54 | | 4.3
4.3.1
4.3.2 | Size and specificity of the combining site, 43
Size, 48
Specificity, 49 | | 4.2
4.2.1
4.2.2 | Antibody affinity, 42
Measurement of affinity, 44
Avidity, 47 | | 4.1 | Introduction, 42 | | 4 | THE ANTIBODY COMBINING SITE, 42 M. J. TAUSSIG | | 3.7 | Discussion, 37 | | 3.6 | A model for IgM, 36 | | 3.5 | Rules for immunoglobulin model building, 35 | | 3.4
3.4.1
3.4.2
3.4.3 | A stochastic approach, 32
Sequence data, 34
Carbohydrate, 34
Dissociation of IgM, 34 | | 3.3 | X-ray crystallographic studies of immunoglobulins, 31 | | 3.2 | Electron microscopy, 24 | | 3.1 | Introduction, 24 | | 3 | THE THREE-DIMENSIONAL STRUCTURE OF IMMUNOGLOBULINS, 24 A. FEINSTEIN | | 2.6 | The number of germ-line genes: annealing studies with nucleic acids, 21 | | 6 | THE EVOLUTION AND GENETICS OF ANTIBODY AND COMPLEMENT, 76 M. J. HOBART | |---|---| | 6.1
6.1.1 | Introduction, 76 Evolutionary origins, 76 | | 6.2
6.2.1
6.2.2 | Gene duplication, 77 Polyploid duplication, 77 Tandem duplication, 78 | | 6.3
6.3.1
6.3.2 | The evolution of immunoglobulins, 79
Evolution of heavy-chain classes, 81
Evolution of heavy chain subclasses, 81 | | 6.4
6.4.1
6.4.2
6.4.3 | Allotypes and sporadic events, 81 Human heavy chain allotypes, 81 'Lepore' heavy chains, 86 Heavy chain disease proteins, 86 | | 6.5
6.5.1
6.5.2
6.5.3 | Complement, 87 Complement deficiencies, 87 Complement allotypes (polymorphisms), 87 Complement evolution: a wild speculation, 89 | | II | IMMUNOBIOLOGY | | | Preamble to Section II, 91 | | II.1 | Introduction, 91 | | II.2
II.2.1
II.2.2
II.2.3 | Antigens, 91 Rigidity, 91 Valency, 91 Hapten-carriers, 92 | | II.3
II.3.1
II.3.2
II.3.3 | Antigen recognition and the allergic response, 93
Initial phase, 94
Central phase, 94
Effector phase, 94 | | II.4 | Homeostatic control of the allergic response, 96 | | II.5
II.5.1
II.5.2 | Lymphoid tissues, 96 Primary lymphoid organs, 97 Secondary lymphoid organs, 97 | | 7 | T AND B LYMPHOCYTES, 98 1. McConnell | | 7.1 | Introduction, 98 | | 7.2.
7.2.1
7.2.2
7.2.3
7.2.4
7.2.5 | Lymphocyte markers, 98 Alloantigens and heteroantigens, 98 Lymphocyte surface receptors, 99 Surface immunoglobulin, 103 Mitogen responsiveness, 105 Analysis of lymphocyte populations, 105 | | 7.3 | Expression of surface markers during lymphocyte differentiation, 107 | | 7.4
7.4.1
7.4.2 | Recognition of antigen by lymphocytes, 108
Techniques for identifying individual antigen-binding cells, 108
Techniques for analyzing antigen-specific cell populations, 109 | | 7.5
7.5.1
7.5.2
7.5.3 | Characterization of the B lymphocyte antigen receptor, 109 Immunoglobulin nature, 109 Class, subclass and allelic exclusion of surface immunoglobulin, 111 Distribution of cell surface immunoglobulin, 112 | | ix | Contents | | | | | | 7.6
7.6.1
7.6.2
7.6.3
7.6.4 | Characterization of the T lymphocyte antigen receptor, 114
Surface immunoglobulin, 114
Characterization of soluble specific factors from T cells, 115
Specificity of antigen recognition by T cells, 116
Immune response (Ir) genes and T cells, 116 | |---|--|--| | | 8 | THEORIES OF ANTIBODY FORMATION, 120 P. J. LACHMANN | | | 8.1 | Introduction, 120 | | | 8.2
8.2.1
8.2.2.
8.2.3
8.2.4 | Selective versus instructive theories, 120
Ehrlich's selective hypothesis, 120
Instructive or template hypothesis, 120
Clonal selection hypothesis, 122
Accurate sample hypothesis, 122 | | | 8.3
8.3.1–8. | The accurate sample hypothesis, 122
3.6 Tenets of the hypothesis, 122–124 | | | 8.4
8.4.1
8.4.2
8.4.3
8.4.4 | The problem of antibody diversity, 124 The generator of diversity (GOD), 124 The epitopic universe, 125 The antibody repertoire, 125 One or two generators of diversity, 125 | | | 8.5
8.5.1
8.5.2
8.5.3 | The origin of GOD, 126
Somatic or germ line, 126
Histocompatibility antigens as the driving stimulus to
antibody diversity, 127
The idiotype paradox and the network theory, 127 | | | 9 | CELL INTERACTIONS IN THE ALLERGIC RESPONSE, 130 1. McConnell | | | 9.1 | Introduction, 130 | | | 9.2
9.2.1
9.2.2 | Experimental models, 130 The adoptive transfer system, 130 Graft versus host reactions (GVH), 130 | | | 9.3
9.3.1
9.3.2
9.3.3
9.3.4 | Cell populations, 131 T lymphocyte populations, 132 T lymphocyte enriched populations, 133 B lymphocyte populations, 133 B mice, 133 | | | 9.4
9.4.1
9.4.2
9.4.3 | In vitro systems for antibody formation, 134
Mishell and Dutton culture, 135
Marbrook culture, 135
Jerne plaque assay, 135 | | 1 | 9.5
9.5.1 | Lymphocyte cooperation, 136
Restoration of response to SRBC in immunologically
unresponsive mice, 136 | | | 9.5.2 | Analysis of the response to hapten-carrier conjugates, 139 | | • | 9.6
9.6.1
9.6.2 | Possible mechanisms of lymphocyte cooperation:
I—specific cooperation, 141
Hypothesis, 141
Experimental evidence, 142 | | , | 9.7
9.7.1
9.7.2
9.7.3 | Mechanisms of lymphocyte cooperation: II—non-specific cooperation, 143 Hypothesis, 143 In vitro experimental evidence, 145 In vivo studies, 146 | | ٤ | 9.8 | In vivo significance of cell cooperation, 147 | | | | | Contents | 9.9 | Other levels of cell interaction, 148 | |--|--| | 9.9.1
9.9.2
9.9.3 | T. cell suppression, 148 T-T cell interactions, 148 Macrophage-T cell interaction, 148 | | 9.10 | Cell membrane requirements in cell interactions, 149 | | 10 | IMMUNOLOGICAL TOLERANCE
AND UNRESPONSIVENESS, 152
P. J. LACHMANN | | 10.1
10.1.1 | Introduction, 152
Historical, 152 | | 10.2
10.2.1
10.2.2 | Factors promoting tolerance induction, 153
State of the lymphon, 153
Properties of antigen, 153 | | 10.3
10.3.1 | Tolerance at the cellular level, 155 Tolerance induction in T and B cells, 155 | | 10.4
10.4.1
10.4.2
10.4.3 | T cell mediated suppression and regulation, 157
Suppression via the B cell receptor, 157
Suppression via antigen, 158
Summary, 159 | | 10.5
10.5.1
10.5.2 | Tolerogenic interactions between B cell receptor and antigen, 159 Blocking of B cell receptors by antigen, 159 Influence of epitope density, 159 | | 10.6
10.6.1 | Blocking factors, 161 Immune complex blocking factors, 161 | | 10.7 | Blocking factors in vivo, 161 | | 10.8 | Conclusion and prejudices, 162 | | 11 | ANTIGENIC COMPETITION, 165 M. J. TAUSSIG | | 11.1 | Introduction, 165 | | 11.2
11.2.1
11.2.2 | Mechanisms of antigenic competition, 165
Sequential competition, 167
Intra- and intermolecular competition, 169 | | 11.3
11.3.1
11.3.2 | Models for intramolecular and intermolecular competition, 173
Intramolecular competition, 173
Intermolecular competition, 175 | | 11.4 | Conclusion, 177 | | 12 | EFFECTOR MECHANISMS
IN CELLULAR IMMUNITY, 179
H. VALDIMARSSON | | 12.1 | Introduction, 179 The effector cells of cell-mediated immunity, 179 | | 12.2
12.2.1
12.2.2
12.2.3
12.2.4 | Mononuclear phagocytes, 180 Origin and maturation, 180 Lysosomal enzymes, 181 Macrophage activation, 181 Microbicidal mechanisms, 181 | | 12.3 | K cells, 182
Lymphocyte activation and its consequences, 183 | | 12.4
12.4.1
12.4.2 | Lymphokines, 185
Classification and characterization of lymphokines, 185
Production of lymphokines, 188 | | | | xi Contents | 12.5
12.5.1
12.5.2
12.5.3
12.5.4
12.5.5
12.5.6 | Cytotoxicity, 189 Direct cytotoxic activity of lymphoid cells, 189 Allogant cytotoxicity (type 1), 189 Tumour antigen-induced cytotoxicity (type 2), 189 Mitogen-induced cytotoxicity (type 3), 191 Antibody-induced K cell mediated cytotoxicity (type 4), 191 The requirement for effector-target cell contact, 191 | |--|---| | 12.6.1
12.6.2
12.6.3
12.6.4 | Attempts to relate in vitro phenomena to manifestation of cell-mediated immunity in vivo, 192 Effects in vitro of factors produced in vivo, 192 Effects in vivo of factors produced in vitro, 192 Clinical observations, 193 Histological studies of CMI reactions, 193 | | 12.7 | Schematic translation of the <i>in vitro</i> activities into unified model for CMI mechanisms, 193 | | 12.8 | Concluding remarks, 193 | | 13 | B LYMPHOCYTE DIFFERENTIATION, 197 M. COOPER | | 13.1 | Introduction, 197 | | 13.2
13.2.1
13.2.2
13.2.3 | Clonal development, 198 Primary site of B lymphopoiesis in chickens, 198 Primary site of B lymphopoiesis in mammals, 199 B lymphocyte differentiation in human fetal liver, 199 | | 13.3 | Mechanism for generation of Ig class heterogeneity among mammalian B lymphocytes, 200 | | 13.4
13.4.1
13.4.2 | Antigen-induced B lymphocyte differentiation, 201
Role of antigen, 201
Role of T cells, 202 | | 13.5 | Defects of B lymphocyte differentiation in man, 202 | | 13.6 | Summary, 204 | | 14 | STRUCTURE AND FUNCTION OF LYMPHOID TISSUE, 206 1. MCCONNELL | | 14.1 | Introduction, 206 | | 14.2
14.2.1
14.2.2 | The lymphon, 206 Experimental models for analyzing lymphocyte traffic, 206 Lymphocyte life-span, 207 | | 14.3
14.3.1
14.3.2
14.3.3
14.3.4
14.3.5 | Cell content and cytoarchitecture of lymphoid tissues, 207 Cell content, 207 Thymus and Bursa of Fabricius, 208 Lymph nodes, 209 Spleen, 211 Gut associated lymphoid tissue (GALT), 212 Lymphocyte circulation, 212 | | 14.4
14.4.1
14.4.2 | Lymphocyte migration from primary lymphoid organs, 213
Bone marrow—blood, 213
Thymus—blood, 214 | | 14.5 | Lymphocyte recirculation between secondary lymphoid organs | | 14.5.1
14.5.2
14.5.3 | 214 Blood→lymph node→lymph→blood, 214 Blood→tissues→lymph node→blood, 216 Blood→spleen→blood, 216 | | 14.6 | Lymphocyte migration within spleen and lymph nodes, 216 | | | | xii Contents | 14.6.1 $14.6.2$ | Lymph nodes, 216
Spleen, 216 | |--|---| | 14.7
14.7.1
14.7.2 | Uptake of antigen by lymphoid tissue, 217
Access to lymphoid tissue, 217
Localization in lymphoid tissue, 217 | | 14.8
14.8.1
14.8.2 | Non-specific effects of antigen on lymphocyte traffic, 218
Cell 'shutdown', 218
Lymphocyte recruitment, 219 | | 14.9
14.9.1
14.9.2
14.9.3 | Specific effects of antigen on lymphocyte traffic, 219
Specific lymphocyte recruitment, 219
Antigen-specific effects within lymphoid tissue, 220
T-B cell cooperation in vivo, 220 | | 14.10 | Circulation of virgin, primed and activated lymphocytes, 221 | | III | IMMUNOGENETICS | | | Preamble to Section III, 225 | | III.1
III.2 | Introduction, 225 Alloantisera to cell-surface determinants, 225 | | III.3
III.3.1
III.3.2
III.3.3 | Graft rejection and its in vitro 'correlates', 226 Mixed lymphocyte reaction (MLR), 226 Cell-mediated lympholysis (CML), 226 The distinction between SD and LD antigens, 227 | | 15 | THE MAJOR HISTOCOMPATIBILITY SYSTEM, 228 A. MUNRO AND S. BRIGHT | | 15.1 | Introduction, 228 | | $15.2 \\ 15.2.1$ | The <i>H-2</i> complex, 228 The <i>H-2</i> map, 229 | | 15.3 | K and D regions, 229 | | 15.4
15.4.1
15.4.2 | The I region, 232
The Ia antigens, 232
Immune response genes, 233 | | 15.5 | The Ss-S1p region, 233 | | 15.6 | The TLA region, 233 | | 15.7 | The human major histocompatibility system, 233 | | 15.8
15.8.1 | HL-A system, 233
HL-A antigens, 235 | | 15.9
15.9.1
15.9.2 | Special features of HL-A genetics, 235
Extent of polymorphism, 235
Linkage disequilibrium, 236 | | 15.10
15.10.1
15.10.2
15.10.3 | The MHS gene products, 236 The biochemistry of the H-2 and HL-A gene products, 236 The biochemistry of the Ia gene product, 237 Arrangement of the MHS products on the cell surface, 237 | | 16 | THE GENETIC CONTROL OF IMMUNE RESPONSES, 239 A. J. MUNRO | | 16.1 | Introduction, 239 | | 16.2 | Genes controlling the overall level of antibody responses, 239 | | 16.3 | Immunoglobulin-linked immune response genes, 240 | | 16.4 | The histocompatibility-linked immune response genes, 241 | | xiii | Contents | | 16.4.1
16.4.2
16.4.3 | Inheritance and arrangement of <i>Ir</i> genes, 241 The number of <i>Ir</i> genes, 243 | |--|---| | 16.5 | The significance of H-linked Ir genes, 244 | | 16.6
16.6.1 | The cellular level of expression of <i>Ir</i> genes, 244 The response to PLL in guinea-pigs: evidence for expression of <i>Ir</i> genes by T-cells, 244 | | 16.6.2 | The response to (T,G)-AL: evidence for expression of Ir by T-cells, 245 | | 16.6.3 | The response to (T,G)-AL: evidence for expression of Ir by B cells, 246 | | 16.7 | Conclusion, 247 | | 17 | THE GENETIC BASIS OF
CELL-MEDIATED REACTIONS, 249
H. FESTENSTEIN AND P. DEMANT | | 17.1 | Introduction, 249 | | 17.2
17.2.1
17.2.2 | Genes controlling lymphocyte activating determinants (Lads), 249
Lads in man, 249
Lads in mice, 249 | | 17.3
17.3.1 | Relationship of the Lads antigens to other products of the
H-2 region of mice, 250
Molecular identity of the Lads gene products, 251 | | 17.4
17.4.1 | The M locus, 251
Comparison of M-locus with MHS Lads, 251 | | 17.5
17.5.1
17.5.2 | Genetic determinants involved in CML, 253
The effector cell stimulating locus (ECS), 253
One way situations, 253 | | 17.6
17.6.1
17.6.2 | In vivo significance of Lads, 255
Experimental, 255
Clinical, 256 | | 17.7
17.7.1
17.7.2 | Genetic control of magnitude of reaction, 256
Mixed lymphocyte reactions, 256
CML reactions and rejection of grafts, 257 | | 17.8
17.8.1
17.8.2
17.8.3
17.8.4 | Tissue typing and graft survival, 257 The role of linkage, 258 The role of linkage disequilibrium, 259 The role of summative effects and 'controlling' loci, 259 The role of multi-locus typing, 259 | | 18 | HL-A AND DISEASE, 261
R. HARRIS | | 18.1
18.1.1
18.1.2 | Introduction, 261
Linkage disequilibrium, 261
Disease associations, 261 | | 18.2
18.2.1 | Ankylosing spondylitis, 262
Inheritance of ankylosing spondylitis, 263 | | 18.3 | Ragweed hay fever and HL-A, 264 | | 8.4 | Coeliac disease and HL-A 1,8, 264 | | 8.5 | Multiple sclerosis (MS) and HL-A, 265 | | 8.6
8.6.1
8.6.2
8.6.3 | Possible explanations for HL-A associations, 266 Ir genes and hypersensitivity, 266 Direct participation of the HL-A macromolecules in disease, 267 Which of these explanations most plausibly explains the associations between HL-A antigens and various diseases?, 267 | | | | xiv Contents | 18.7
18.7.1
18.7.2
18.7.3
18.7.4
18.7.5 | Practical applications of HL-A disease associations, 269
At risk individuals, 269
Diagnosis, 269
Prognosis, 269
Epidemiology, 270
Genetics, 270 | |--|--| | IV | IMMUNOPATHOLOGY | | | Preamble to section IV, 273 | | 19 | BIOLOGICAL ACTIVITIES OF COMPLEMENT, 274 D. L. BROWN | | 19.1 | Introduction, 274 | | 19.2
19.2.1 | Adherence reactions, 274 Adherence reactions in vivo, 275 | | 19.3
19.3.1
19.3.2 | Peptide fragments, 276
Anaphylatoxins, 276
Chemotactic factors, 276 | | 19.3.3 | Neutrophil mobilizing factor, 276 | | 19.4
19.4.1
19.4.2 | Lytic reactions, 277
Complement deficiencies, 277
Bystander lysis, 277 | | 19.5 | Complement components as auto-antigens, 277 | | 19.6
19.6.1
19.6.2 | Role of complement in destruction of microorganisms, 279
Bacteria, 279
Virus neutralization, 279 | | 19.7 | Interrelationships between the complement and coagulation | | 19.7.1
19.7.2 | systems, 280 Platelet reactions, 280 Hageman factor activation and hereditary angio-oedema (HAE), 281 | | Comple | ement and allergic inflammation, 282 | | 19.8
19.8.1
19.8.2 | Type II allergic reactions, 283
Forssman shock, 283
Antibody-glomerular basement membrane (GBM) antibody, 284 | | 19.9
19.9.1 | Type III allergic reactions, 284 The Arthus reaction, 284 | | 19.9.2
19.9.3 | Serum sickness, 284 Aggregate anaphylaxis and acute endotoxaemia, 285 | | 20 | AUTOALLERGIC DISEASES, 287
C. J. SPRY | | 20.1 | Introduction, 287 | | 20.2
20.2.1
20.2.2 | Concepts of autoallergic disease, 287
T-lymphocyte unresponsiveness to autoantigens, 287
The role of suppressor T lymphocytes, 288 | | 20.3
20.3.1
20.3.2
20.3.3
20.3.4 | Autoallergic disease in man, 289 Types of autoallergic diseases in man, 290 Autoantibodies in man, 290 Antibody to lymphocytes, 290 Type IV reactions to autoantigens, 290 | | 20.4
20.4.1
20.4.2 | Experimental models of autoallergic diseases, 292
NZB/NZW mice and SLE, 292
Thyroiditis in obese chickens, 293 | | 20.5 | Genetic aspects of autoallergic diseases, 293 | | xv | Content | | 21 | TUMOUR IMMUNOLOGY, 296 P. ALEXANDER | |---|--| | 21.1 | Introduction, 296 | | 21.2 | The nature of tumour-specific transplantation antigens (TSTAs), 296 | | 21.2.1
21.2.2 | Detection of TSTAs, 297
Classification of TSTAs, 297 | | 21.3 | Immune surveillance, 298 | | 21.4
21.4.1 | Resistance to tumours, 298
Tumour escape from allergic destruction, 299 | | 21.5
21.5.1
21.5.2 | Immunotherapy of cancer, 301 Passive immunotherapy, 301 Active immunotherapy, 302 | | 21.6
21.6.1
21.6.2
21.6.3 | Attempts to establish the role of immunotherapy in the management of malignant disease, 303 Conduct of trials, 304 Trials of non-specific immunotherapy, 304 Trials of specific immunotherapy, 305 | | 21.7 | Conclusion, 305 | | 22 | FETO-MATERNAL RELATIONSHIPS, 308 C. M. STERN | | 22.1 | Introduction, 308 | | 22.2
22.2.1
22.2.2 | Mutual exposure to antigen, 308
Maternal exposure to antigen, 308
Fetal exposure to antigen, 309 | | 22.3
22.3.1
22.3.2 | Maternal responses to fetal antigen, 309
Humoral responses, 309
Cell-mediated responses, 310 | | 22.4
22.4.1
22.4.2
22.4.3 | Fetal responses to antigen, 311 Fetal immunocompetence, 311 Humoral responses, 312 Cell-mediated responses, 313 | | 2.5 | Factors which may suppress allergic reactivity, 313 | | 2.6 | Effects of histo-incompatibility, 314 | | 22.7 | Conclusion, 315 | | 23 | IMMUNITY AND IMMUNITY DEFICIENCY, 317 H. VALDIMARSSON | | 3.1 | Introduction, 317 | | 3.2.1
3.2.2
3.2.3
3.2.4
3.2.5 | Protective mechanisms, 317 Evolution of protective mechanisms, 318 Non-specific surface factors, 318 Non-specific humoral (tissue) factors, 320 Non-specific cellular mechanisms, 320 Phagocytosis and intracellular killing mechanisms, 322 | | 3.3
3.3.1 | Specific defence mechanisms, 323 The functional dichotomy of specific immunity, 323 | | 23.4
23.4.1
23.4.2 | Anergy, 325
Cellular anergy, 325
Humoral anergy, 326 | | 3.5
3.5.1 | Immunity deficiency syndromes, 328
General haemopoetic deficiency, 328 | | rvi | Contents | 七为试读,需要完整PDF请访问: www.ertongbook.com