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Preface to the Second Edition

This section edition contains three new chapters—‘Quantum processes in a
magnetic field, Scattering in a degenerate gas, and Dynamic screening’—
which 1 hope will enhance the usefulness of the book. Following the
ethos of the first edition I have tried to make the rather heavy
mathematical content of these new topics as straightforward and acces-
sible as possible. I have also taken the opportunity to make some
corrections and additions to the original material—a brief account of
alloy scattering is now included—and I have completely rewritten the
section on impact ionization. An appendix on the average separation of
impurities has been added, and the term ‘third-body exclusion’ has
become ‘statistical screening’, but otherwise the material in the first
edition remains substantially unchanged.

Thorpe-le-Soken 1988 B. K. R.



Preface to the First Edition

It is a curious fact that in spite of, or perhaps because of, their over-
whelming technological significance, semiconductors receive compara-
tively modest attention in books devoted to solid state physics. A student
of semiconductor physics will find the background theory common to all
solids well described, but somehow all the details, the applications, and
the examples—just those minutiae which reveal so vividly the conceptual
cast of mind which clarifies a problem—are all devoted to metals or
insulators or, more recently, to amorphous or even liquid matter. Nor
have texts devoted exclusively to semiconductors, excellent though they
are, fully solved the student’s problem, for they have either attempted
global coverage of all aspects of semiconductor physics or concentrated
on the description of the inhomogeneous semiconducting structures which
are used in devices, and in both cases they have tended to confine their
discussion of basic physical processes to bare essentials in order to
accommodate breadth of coverage in the one and emphasis on application
in the other. Of course, there are distinguished exceptions to these
generalizations, texts which have specialized on topics within semiconduc-
tor physics, such as statistics and band structure to take two examples, but
anyone who has attempted to teach the subject to postgraduates will, I
believe, agree that something of a vacuum exists, and that filling it means
resorting to research monographs and specialist review articles, many of
which presuppose a certain familiarity with the field.

Another facet to this complex and fascinating structure of creating,
assimilating, and transmitting knowledge is that theory, understandably
enough, tends to be written by theoreticians. Such is today’s specialization
that the latter tend to become removed from direct involvement in the
empirical basis of their subject to a degree that makes communication
with the experimentalist fraught with mutual incomprehension. Some-
times the difficulty is founded on a simple confusion between the dispa-
rate aims of mathematics and physics—an axiomatic formulation of a
theory may make good mathematical sense but poor physical sense—or it
may be founded on a real subtlety of physical behaviour perceived by one
and incomprehended by the other, or more usually it may be founded on
ignorance of each other’s techniques, of the detailed analytic and numeri-
cal approximations propping up a theory on the one hand, and of the
detailed method and machinery propping up an experimental resuit on
the other. Certainly, experimentalists cannot avoid being theoreticians
from time to time, and they have to be aware of the basic theoretical
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viii Preface to the first edition

structure of their subject. As students of physics operating in an area
where physical intuition is more important than logical deduction they are
not likely to appreciate a formalistic account of that basic structure even
though it may possess elegance. Intuition functions on rough approxima-
tion rather than rigour, but too few accounts of theory take that as a
guide.

This book, then, is written primarily for the post-graduate student and
the experimentalist. It attempts to set out the theory of those basic
quantum-mechanical processes in homogeneous semiconductors which
are most relevant to applied semiconductor physics. Therefore the subject
matter is concentrated almost exclusively on electronic processes. Thus no
mention is made of phonon-phonon interactions, nor is the optical
absorption by lattice modes discussed. Also, because I had mainstream
semiconductors like silicon and gallium arsenide in mind, the emphasis is
on crystalline materials in which the electrons and holes in the bands obey
non-degenerate statistics, and little mention is made of amorphous and
narrow-gap semiconductors. Only the basic quantum-mechanics is discus-
sed; no attempt is made to follow detailed applications of the basic theory
in fields such as hot electrons, negative-differential resistance, acousto-
electric effects, etc. To do that would more than triple the size of the
book. The theoretical level is at elementary first- and second-order
perturbation theory, with not a Green’s function in sight; this is inevita-
ble, given that the author is an experimentalist with a taste for doing his
own theoretical work. Nevertheless, those elementary conceptions which
appear in the book are, I believe, the basic ones in the field which most of
us employ in everyday discussions, and since there is no existing book to
my knowledge which contains a description of all these basic processes I
hope that this one will make a useful reference source for anyone
engaged in semiconductor research and device development.

Finally, a word of caution for the reader. A number of treatments in
the book are my own and are not line-by-line reproductions of standard
theory. Principally, this came about because the latter did not exist in a
form consistent with the approach of the book. One or two new expres-
sions have emerged as a by-product, although most of the final results are
the accepted ones. Where the treatment is mine, the text makes this
explicit.

Colchester 1981 B.K.R.
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1 . Band structure of semiconductors

1.1. The crystal Hamiltonian

For an assembly of atoms the classical energy is the sum of the following:

(a) the kinetic energy of the nuclei;

(b) the potential energy of the nuclei in one another’s electrostatic

field;

(¢) the kinetic energy of the electrons;

(d) the potential energy of the electrons in the field of the nuclei;

(e) the potential energy of the electrons in one another’s field;

(f) the magnetic energy associated with the spin and the orbit.

Dividing the electrons into core and valence ¢lectrons and leaving out
magnetic effects leads to the following expression for the crystal Hamilto-
nian:

Pl P e’l4me,
H=Dong L UR Rt 2y r LV RO FL T
where | and m label the ions, i and j label the electrons, p is the
momentum, M is the ionic mass, m is the mass of the electron, UR, —
R, ) is the interionic potential, and V(r; —R,) is the valence—electron—ion
potential.

The Schrodinger equation determines the time-independent energies of
the system:

1.1)

HE=EE (1.2)

where H is now the Hamiltonian operator.

1.2. Adiabatic approximation

The mass of an ion is at least a factor of 1:8 x 10° greater than that of an
electron, and for most semiconductors the factor is well over 10°. For
comparable energies and perturbations ions therefore move some 10°
times slower than do electrons, and the latter can be regarded as
instantaneously adjusting their motion to that of the ions. Therefore the
total wavefunction is approximately of the form

E =¥(r, R)P(R) (1.3

where ®(R) is the wavefunction for all the ions and W¥(r,R) is the

wavefunction for all the electrons instantaneously dependent on the ionic
position. '



2 Band structure of semiconductors

The Schrodinger equation can be written
Y, R H, P (R)+O(R)H V¥ (r, R)+ H¥(x, R)YD(R) = E¥(r, R)®(R) (1.4)

where

H'¥(xr, R)O(R) = HL\If(r, R)DR) - ¥(r, R)H, O(R) (1.5)
H, = 2Mt +l§ UR,-R,) (1.6)

_y . B e’/4me,
He—izsz"i‘z‘V(l'i Rl)+§ Y (1.7)

The relative contribution of H' is of the order m/M, The adiabatic
approximation consists of neglecting this term. In this case eqn (1.4) splits
into a purcly ionic equation

H; ®(R)=E, ®(R) (1.8)
and a purely electronic equation
H.¥(r,R)=E ¥(r, R). (1.9)

1.3. Phonons

Provided that the ions do not move far from their equilibrium positions in
the solid their motion can be regarded as simple harmonic. If the
equilibrium position of an ion 15 denoted by the vector Rj; and its
displacement by w;, the Hamiltonian can be written

Z

where D, (R, —R,,) is the restoring force per unit displacement, H; 5(R,0)
is an additive constant dependent only on the equilibrium separation of
the ions, and H{ represents the contribution of anharmonic forces. The
displacements can be expanded in terms of the normal modes of vibration
of the solid. The latter take the form of longitudinally polarized and
transversely polarized acoustic waves plus, in the case of lattices with a
basis, i.e. more than one atom per primitive unit cell, longitudinally and
transversely polarized ‘optical’ modes. (See Section 3.9 for an account of
the theory for long-wavelength acoustic modes.) Ionic motion therefore
manifests itself in terms of travelling plane waves

+3 D, (R —R,)um, +H (R)+H]  (1.10)
2Ml Im

ww, q) =u, explilg.r— wt)} (1.11)

which interact weakly with one another through the anharmonic term Hj .
Figure 1.1 shows the typical dispersion relation between w and q.



The one-electron approximation 3

W
== 0 and 0 optical modes
LA
A E acoustic modes
TA
0 q ZB

Fic. 1.1. Dispersion of lattice waves.

The energy in a mode is given by
E(w,q) ={n(w,q +3}he (1.12)

where n(w, q) is the statistical average number of phonons, i.e. vibrational
quanta, excited. At thermodynamic equilibrium n(w, q) = n{w) is given by
the Bose~Finstein function for a massless particle

1
exp(ho/kgT)—1"

The following points should be noted.

(1) The limits of q according to periodic boundary conditions are
27/Na and the Brillouin zone boundary, where N is the number of
unit cells of length a along the cavity.

(2) The magnitude of a wavevector component is 2ml/Na, where lisan
integer. The curves in Fig. 1.1 are really closely spaced points.

(3) An impurity or other defect may introduce localized modes of
vibration in its neighbourhood if its mass and binding energy are
different enough from those of its host.

(4) For long-wavelength acoustic modes @ = t,q. For others it is often
useful to approximate their dispersion by @ = constant.

nw)=

(1.13)

1.4. The one-electron approximation

If the electron—eclectron interaction is averaged we can regard any
deviation from this average as a small perturbation. Thus we replace the
repulsion term as follows:

~—=H_ ,+H_, (1.14)

where H,, contributes a constant repulsive component to the electronic
energy and H_. is a fluctuating electron—electron interaction which can be

A ——— e i~ s b



4 Band structure of semiconductors

regarded as small. If H,_. is disregarded each electron reacts indepen-
dently with the lattice of ions. Consequently we can take

W(r, R):ﬂ ¥ (r, R) (1.15)

with the proviso that the occupation of the one-electron states is in
accordance with the Pauli exclusion principle. We obtain the one-electron
Schrodinger equation

H y;(x;R) = E¢.(x;,R) (1.16)
where
p?
Hei=2—r;+; V(r,—R,). (1.17)

This Hamiltonian still depends on the fluctuating position of ions, and it is
useful to reduce the Hamiltonian into one that depends on the interaction
with the ions in their equilibrium positions with the effect of ionic
vibrations taken as a perturbation. Thus we take

Hei: HeOi+Hep (118)
p;
HeOi:Ef"n'+zl: V(l'i_Rlo) (1.19)

where the H,, is the elcctron—phonon interaction. The electronic band
structure is obtained from (dropping the subscripts i and e)

2
{22"—1+ ; V(r-Ry) }¢(r) = E(r). (1.20)

1.5. Bloch functions

In the case of a perfectly periodic potential the eigenfunction is a Bloch
function:

Y (r) = U—nk(l')exp(ik-l') (1.21)
U (T +R) =1, (¥) (1.22)

where R is a vector of the Bravais lattice, n labels the band and k is the
wavevector of the electron in the first Brillouin zone (Fig. 1.2). From eqns
(1.21) and (1.22) if follows that

e+ R) = ¢ (Mexp(ik.R). (1.23)

If a macroscopic volume V is chosen whose shape is a magnified version
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a b
FiG. 1.2. The first and second zones for a face-centred cubic lattice. The first has half the

volume of the cube that is determined by extending the six square faces. The second has the
same volume as this cube.

of the primitive cell, then we can apply the periodic boundary condition

YT+ Na) = ¢, (x) (1.24)

where a is a vector of the unit cell and N is the number of unit cells along
the side of V in the direction of a. This decouples the properties of the
wavefunction from the size of a crystal, provided the crystal is macros-
copic. Equations (1.23) and (1.24) constrain k such that

exp(ik. Na)=1.
Therefore
k.Na=2nn (1.25)
where # is an integer. In terms of reciprocal lattice vectors K, defined by
K .8 =27; (1.26)
the electronic wavevector assumes the values

n, n
k_ —= _

+ + =K, 1.27
N1K1 N2K2 N3K3 ( )

Thus the volume of an electronic state in k-space is given by
Ak, Ak, Aks=(2m)?/ V. (1.28)

If q is any vector that satisfies the periodic boundary conditions then
the wavefunction can be written generally as an expansion in plane
waves:

G(r) = ). cq explig.m). (1.29)

This general expansion can be related to the Bloch form by putting
q =k —K where k is not necessarily confined to the first Brillouin zone:

Un (@) = exp(ik.r1) Z Gk exp(—iK.r) (1.30)
K



6 Band structure of semiconductors

and thus
u(r) = Z Cpx exp(—iK.r). (1.31)
K

Yet another form for a Bloch function can be formed out of functions
¢, (x—R) which are centred at the lattice points R. These are known as
Wannier functions. The relation between Bloch and Wannier functions is

Pos® = 2, b, (r—R)exp(ik.R). (1.32)

This is a useful formulation for describing narrow energy bands when the
Wannier function can be approximated by atomic orbitals in the tight-
binding approximation.

Since the Bloch functions are eigenfunctions of the one-electron
Schrodinger equation they are orthogonal 10 one another, viz.

[ l[’f’k'lllnk dr=3,, Suw (1.33)

with

1 v
Yok = 517 o (DexP(ik. ). (1.34)

1.6. Nearly-free-electron model

When the periodic potential is very weak the valence electron is almost
free, and hence

Ey~h2k2/2m. (1.35)

In the cases of semiconductors with diamond and sphalerite structure
there are two atoms in each primitive cell and eight valence electrons.
Therefore there have to be four valence bands with two electrons of
opposing spin in each state. By allowing k to extend beyond the first zone,
we can work out the total width of the four valence bands by equating it
with the Fermi energy E; for a free-electron gas of the same density as
the valence electrons. Observations of soft X-ray emission confirm that
the width of the valence band in these semiconductors is indeed close to
E;. Thus it is reasonable. to assume that the valence electrons are almost
free, and eqn (1.35) is a good approximation to the energy provided we
take into account the effect of the lattice.
Restricting k to the first Brillouin zone (Fig. 1.2) we obtain

E,~hq*2m (1.36)
q-k+K. (1.37)
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The first band is obtained for K= (0, 0, 0)2+/a, and is obviously parabolic.
At the zone boundary there is an energy gap in general. The second band
is obtained from the smallest non-zero reciprocal lattice vectors, which
are K=(1,1, 1)27/a and its cubic fellows (e.g. (—1,1,1)27/a) and K, =
(2,0,0)2m/a and its cubic fellows (e.g. (0,2,0)27/a)). At the zone
boundary along the (100) direction q=K,/2=2n/a and k=—-K,/2=
—2mfa. As q increases k moves towards zero, reaching it when g =K, =
47/a. At the zone boundary along the (111} direction q=K;/2=/3w/a
and k=—K,/2=—/37/a. As q increases, k moves to zero, reaching it
when q=K,=2/3n/a. The band continues to be parabolic in both
directions, except close to the zone boundaries.

The first and second bands are parabolic directions because the appro-
priate reciprocal lattice vector simply subtracts from g. Bands 3 and 4 are
not that simple because K, and K, are neither parallel nor anti-parallel in
this case. The region in reciprocal lattice space which contains the first
four Brillouin zones is the Jones zone (Fig. 1.3).

Bands 1 and 2 reach the surface of the Jones zone at the points (2, 0, 0)
and (1,1, 1). Bands 3 and 4 are associated with combinations of k, K,
and K, which keep q close to the zone boundary for all k. The smallest q
corresponds to the centre of a face =K, —K,/2 (g=22m/a). With k
along the (100) direction the band is described by q = K, —k. When k=0,
q=X, (q=2.3m/a). Thus q changes by an amount /3—./2 in units of
27/a as k sweeps through the zone in the (100) direction, and hence the
energy changes very little with k. This band is far from being free-electron-
like. The other band is also flat, for again q changes comparatively little
with k because k is more or less perpendicular to the reciprocal vector.

kz

F1G. 1.3. The Jones zone for face-centred cubic crystals containing eight electrons per cell
includes the first four Brillouin zones.



