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PREFACE

This book presents some of the most important aspects of the
current théory and methods of stochastic or probabilistié programming.
The theory of stochastic programming is an active and growing field in
current research and several disciplines like mathematics, statistics,
operations research, and mathematical economics are involved in this
field.

Emphasis in this book centers on methods and applic;tions of sto-
chastic programming in its various aspects, e.g., chance-constrained pro-
gramming, two-stage programming under uncertainty, programming under re-
course, reliability programming, and several other related aspects of
stochastic programming.

Parts of the material covered in this book were developed in con-
nection with my teaéhing a graduate course in operations research dealing
with mathematical programming and other optimization techniques. The
book includes, however, several recent results from the éuthor's own re-
search, which deal in particular with the following: (T) methods of
reliability programming, (2) the implications of nonnormal distributions
in the theory of chance-constrained and other types of stochastic pro-
gramming, {3) the results of sensitivity and robustness analysis in geo-
mg}ric programming and other dynamiﬁ models of stochastic control, agd
(4) the use of cémputational techniques like SUMT (séquential uncon-
strained minimization techniques) in solving empiriéal problems of sto-

chastic programming. Applied and computational aspects occupy a central

viI



vitl Preface

place in our development of the current theory of stochasiic programming.
Hence the book is likely to be useful to applied research workers in var-
ious fields like applied mathematics and statistics, operations research,
and mathematical economics. Whereas the technical aspects of computation
and transformations in terms of nonlinear programming would be of primary
interest to the operations researcher and the applied mathematician, the
empirical and .illustrative applications of the various methods would at-
tract the attention of the economists and other social scientists.

The research materials contained in this book developed out of'a
grant from the U.S. National écience Foundation to which the author is
deeply grateful. The author is also grateful to his former students who.
collaborated with him in j;int research work in the field of stochastic
programming. A special note of thanks is due to Mrs. Rita Bauman, who
did an excellent job of taking care of this technical manuscript and see- .

ing it through.

J.K.S.
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CHAPTER 1

STOCHASTIC PROGRAMMING METHODS

Stochastic programming deals with the theory and methods of incor-
porating stochastic variations into a mathematical brogramming problem.
For instance,. in the usual linear programming (LP) model: {max z = qfx,
Ax £ b, x 2 0] the parameters in the set (A, b, c) aye given and knotn
numbers and it is required to determine an optimal decision vector x
subject to the constraints specified above. If the elements in the set
(A, by c) are stochastic, then stochastic variations are introduced into
the programming problem through random variations in 9, where 6. denotes
the vector with elements (A, b, é). The sources of random variations
may be severalgggepending on the type of problem anq the type of decisions
to be arrived at. For instance, the probability distribution of hay
be known (e.g., the random variations in weather in agricultural applica-
tions) and the'problem is to choose a:decision vector x which is optimal
in some sense. In another case, only sample observations may be avail-
able and we have to estimate the unknown population Earameters.and in-
cofporate these into the program in orﬁer to arrive ét a decision vector
x which is optimal in some sense. - _

Following Tintner {1955), we distinguiéh‘tW6 basic types of stochas-
tic programming, the passive and the‘agtive. The passive stochastic pro-
gram arises when we follow the "wait-and-see" approach, i.e., we wait

»fbr the observations on the random vector © and by utilizing these real~

ized values in a suitable manner we derive either exactly or approximately
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the probability distribution of the maximand (i.e., the maximum value of
the objective function) and of the optimal decision vecior. This approach
may be used to compare, for instance, two production (or resource alloca~
tion) situationg'through two probability distributions of profit Fay.

The second method of stochastic programming called the active app;oach
defines a "here-and-now” attitude about the decision vector x, i.;., in
these problems decisions concerning the activity vector x is made at once
without waiting for the realizations of the random vector © and this is
done by considering a set of possible aecisions with their expected pen-
alty costs due to the random variables deviating from their expectations.
For instance, this approach may be used to compare two possible resource
allocation patterns, e.g., we may have a production problem with x de-
noting different outputs and then consider the probability distribution
of profits under two possible allocation of resources. Th; decision
problem is to compare the probability distribution of optimal profits
under these two resource allocations and then decide on a solution which
is optimal in some sense (e.g., the expected penalty costs provide a cri-
terion of optimality).

It is clear that in both the-passive and active approaches of sto-
chastic programming, the probability distribution of the vector & = (A,
b, c¢) occupies a central place. In the passive approach, it induces the
probability distribution of the maximand and generatés probabilistic
variations around specified optimal basis, when the latter has to be ap-
propriately defined in order to allow admissible perturbations (Sengupta,
Tintner, and Millham, 19633 Tintner, Millham, and Sengupta, 1963). In

the active approach, the additional restrictions on the decision-space:
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interacf with the probability distribution of the vector © and help the
decision maker to compare and evaluate alternative distributions of opti-
mal profits. Emphasis and extension of this distribution approach are
the main objectives of this book. The various probability distributions
"considered here include the normal, the truncated normal,-the chi-square,
the exponential, and the class of nonnegative distributions known as in-
. creasing hazard rate distributions. In particular, the implications of
alternative distributions in terms of the nonlinearities they introduce
into the transformed programming model are discussed in the case of
chance-constraints in Chapter 2, where the stochastic linear ‘constraints
are interpreted according to the theory of chance-constrained program-
ming. It is shown that in certain cases an optimal allocation of toler-
ance measures can be determined along with an optimal decision vector
and this leads to the development of system reliability programming.

In Chapter 3 we discuss a few selected cases where stochastic vari-
ations can be incorporated into a noniinear programming framework and
yet the transformed problem would remain computable in principle by the
existing algorithms like geometric programming, sequential unconstrained
minimization technique (SUMT), and the methads of convex programming. -
Several cases of-active approach of stochastic programming are discgssed
here, e.g., one-stage and two-stage linear programming under .uncertainty,
stochastic goal programming, and a nqnlinear activity analysis model
with a stochastic penalty cost. It is shown here that the penalty func-
tion approach plays an important role in computing optimal trajectories
in a dynamic control model and the methods of simulated optimization are

found useful in developing suitable approximations and suboptimal solutions.
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In Chapter 4 we discuss several empirical applications of various
aspects of stochastic programming. These applications are mainly illus~
trative of (i) various problems of reliability programming, (i{) the
difficulties .of developing suitable approximations, (iii) the problems
of applying linear and othsr subgptimal decision rules in stochastic pro-
gramming, and (iv) the simulation techniques for testing the stability
of alternative feasible solutions in the form of feedback controls appiied;
to a dynamic economic model characterized by the multiplier-accelerator

principle.

1.1 The Passive Approaches to Stochastic Proqramming

In the passive approach‘tq stochastic programming developed by
Tintner (1955, 1960), it is assumed that the realizations of the random
variables ek = (Ak’ b,» ck), k=1, 2, vesy N in the‘ﬂP problem [max z, =
céx, Akx = bk’ x 2 0] are availabie, where k = 1, 2, «..y N denotes a
specific selection of the index set of observations. Now consider the
parameter space spanned by the random elements of 8 = (A, b, c)3 let V|
be the region in this parameter space where the objective function z =
céx is both feasible (i.e., X is a feasible vector) and optimal and fin-

_ite. Denote this optimal (i.e., méximal) value by z:, for such 2 selec-
tion. It is clear that since sope selections may not be feasible, there-
fore, we consider the index set k = 1, 2, «..y K where K = N and in this
sense we are considering the probability distribution of optimal profits
Z' in a truncat d or restricted sense. ‘

It appears to us that two basic questions are raised by Tintner

(1955) in his passive approach. First, it is es$ential to understand
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that the ;andomness in the, coefficients of (A, b, ¢) introduces into the
stochastic.program a -new element unknown to the deterministic framework
where th; coefficients are fixed and known constants. The new element is
that we have a probability distribution of optimal profits and a probabil-
ity distribution of the optimal solution vecter. The deterministic case
becomes a special case of fhisvprobabil§ty distribution, if the point de-
fined by -the set kA, b, c) of deterministic coefficients is included in
the index set k = 1, 2, +.., K already mentioned above. It is clear, how-
ever, that because of truncations and restrictione in the parameter space,
knowing the distribution of the elements of 8 = (A, b, c) is not suffi-
cient to determine the distribution of optimal solutions and also optimal
profits. Indeed, Tintner (1955) has shown that even if the vector 9 is
normally dist;ibuted, the optimal piofits and the solution vector, which
have to- be appropriately definéd, are not normally distributed. Prekopa
{1966) has derived the conditions and réstrictiéns required for the ob-
jective function to follow asyiptotically a normal distribution, provided
the random.variations are so structured around a specific set (A, E,.E)

as to satisfy certain regularity conditions. These and other related
qspects of the passive approach are discussed in some detail by Sengupta -
and Fox (1969) and by Tintner and Sengupta (1972).

A second question raised by the passive approach-is 50w to estimate
and numerically compute the distribution function of theioptimal solution
and the maximand; when the random variations are specially structured
around say a specific set of values 6= (a, b, ©) which may, for instance,
be the‘expected value of the random coefficients. In a numbef of empiri-

cal applications to agricultural and economic planning problems (Tintner,
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19603 Sengupta, 19663 Tintner and Sengupta, 1972), it has been found
that the empirical probability distributioﬁ’of optimal profits is not us-
vally normally distributed and even to determine numerically the shape
of the prcbability distribution is a nontriViél-matter.

Two of the recent developments in the passiveé approach may be
briefly mentioﬁed here. One is developed by Sengupta (1969P, 1972f), to
show the implications of the sampling distribution of optimal profits,
as distinct from the parent distriﬁution-and to develop suitable proba-
bilistic bounds on optimal profits which are random. An interesting ap-
piication of this idea arises in what is known as fractile-ﬁrogranmihg
which is discussed in detail in later chapters. For instance, in the
stochastic LP model [max z = ¢‘xs x € R] where the vector ¢ alone is as-
sumed normal with a mean vector m and dispersion matrix V, if the toler-
ance measure u (0 <u <1) can be suitably preassigned (e.g., u > 0.50),
then a convenient deterministic program, known as the fractile program,

can be easily derived from the stochastic program as follows:

max t =m’'x - q'(x{Vx)l/b, x € R (1a)

where q = Fl(1 - u) >0, if u > 0.50 by maximizing the aspiration level
t in the probability of profits
prob[zzt]=1-F[—t—,-'—‘“ll§§]=u (1b)
(x 'Vx)

The fractile programming problems of the type (la) assume that the
u-fractile of the cumulative distribution of profits z, i.e., F(zu) =u

is known, since the distribution F is known (i.e., normal in this case).
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However, when the sample observations on 8 = (A, p, c) are to be used
without the knowledge of the form of the parent distriﬁution, this is
impossible. However, the order-statistics e(r)’ 9(5) (r <s) where 9(1)
denotes the ith smallest observation provide a distribution-free confi-
dence interval for the fractile @ (i.e., F(8 ) = u) for any continuous

parent distribution.
Prob [8(,) £ 8, <8 )] =1, (r, N-1r+1) - I, (s, N - s +1)

where I, (+) is the incomplete beta function. = Since the ordering on ©,
i.e;, 9(1) s 9(2) £,., % e(r) <,.. s e(s) <,.. S e(N) induces an‘ordei-
ing of profits z, this type of confidence interval may 5e used to compute
the range of optimal profits (z?r) - z?s)) with their associated proba-
bilities.

Another alternative may be used to approximate the parent cdf F(8)
of 8 by its empiricalndistrihution function FN(G) based on the ordered
statistics 9(1) < 9(2) s ... < B(N); this is based on the Kolmogorov-
Smirnov type distance statistic:

Dy=  swp  |Fy(®) - K9]

-0 < B8 <@
whose distribution is independent of the form of the parent distribution
F(GI, except that it is continuous. It is known in nonparametric theory
that Fy(t) provides a point estimate of F(t) in the sense for 6 = t, the
empirical cdf Fy(t) can be used as an estimate of F(t), since the quantity
NFN(t) defines a binomial variable with parameters N and p = F(t). This
approach can be extended to more than one parameter, provided N (f&(ei -

F(ei)> and VN <fN(ej) - F(Bj{) are mutually independent for i # j, where
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the subscript i = 1, ..., k identifies the ith parameter; cases of lim-
ited dependence are also investigated in the iiterature (Walsh, 1964).
. The above idea of-épproximating the parent distribution of a ran-
dom variable z whose distribution function F(z]8) depends on the para-
meter © may also be apprvached through empirical Bayes methods (Mar1tz,
1970). 'In the pure Bayesian approach, the parameter 6 is itself re-
garéed as a realization of another prior random variable with a prior
density g(8) sav. Any decision d within a set D about © is then evalu-

ated by maximizing the expected utility function U(d):
Ugld) = .f u(d, €)g(8)ds8 (1¢)

‘where a suitable scalar function, called the utility function U(d, ©)
mentioned before, is presumed. This suitable scalar function may also
be taken as a loss function L(d, ), the expected value of which is min-
imizéd. Now with a set of observations t being available, the knowledge
of ® is changed by Bayes theorem‘to a posterior distribution given t,
G(8]t) with a density g{8}t). The new e%pected utility which is condi-

tional on the observation t then becomes
r ry /
Uglalt) = J ula, @)g(eft)as (19)

Intuitively, one expects that any decision based on maximizing the ex-
pected utility defined in (1d) which is based on the posterior distribu-
tion must be better than that based on maximizing the expected utility
defined in (lc), since otherw1se the observations t on © have been of no
value. This aspect has been discussed by Sengupta (1972 ).

A second develcpment in the passive approach, due to Bracken and
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Soland (1966), considers a stochastic LP model where the vector ¢ in the
objective function is considered as the unknown mean vector of a multi-
variate sfochastic process. A "prior" statistical distribution on tﬁe
vector ¢ is then gonceived as a prior distiibution on the mean of the
stochastic process and sémpling from this process (Tintner and Sengupta,
1972) enables one to arrive at a posterior distribution on c. The de-
cision prgblem then is to choose an activity vector x which is feasible
and optimal in some sense (e.g.,. expected value maximization) when a
prior or posterior distribution on the vector ¢ is given or estimated.
It is clear that in both these cases the passive approach is very inti-

mately connected with the final decisions taken.

1.2 The Active Approaches

In Tintner's version of the active approach (Tintner and Sengupta,
19723 Sengupta, 1970°), additional decision variables defined by the re-
source allocation matrix U= [”ij] where

n

bs

=ZIb
1 j=1

Y153 Y5 205 ;-3“'-‘1 (1a)

dre introduced, and the conditional distribution of optimal profits are
determined. Thus we have to compare here the conditional probability
distribution of profits under various resource allocation .conditions.
The implicit cost (penalty or premium) of préassigning a particular al-
location matri§ U= [uij] of resources may be computed in this approach
through the corresponding dual variables and their probability distribu-
tions.

It is clear that addi$ional decision variables may be introduced in



