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Optoelectronics

Optoclecironics 1s a practical and sell-contained graduate-level textbook and refercnce, which
will be of great value 1o both students and practising engineers in the field. Sophisticated
concepts are introduced by the authors in a clear and coherent way, including such topics as
quantum mechanics of electron photon interaction. quantization of the clectromagnetic field.
semiconductor properties. quantum theory ol heterostructures, and non-linear optics. The book
builds on these concepts to describe the physics. properties, and performances of the main
optoclectronic devices: light emitting diodes, quantum well lasers. photodetectors, optical
parametric oscillators. and waveguides. Emphasis is placed on the unifying theoretical analogies
of optoelectronics. such as equivalence of quantization in heterostructure wells and waveguide
modes. entanglement of blackbody radiation and semiconduetor statistics. The book concludes
by presenting the latest devices, including vertical surface emitting lasers. quantum well infrared
photodetectors, quantum cascade lasers, and optical requency converters.
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Preface

The ficld of optoelectronics is currently in full expansion, drawing to its classrooms
and laboratorics numerous science and engineering students eager to master the
discipline. From the lecturer’s perspective, optoelectronics is a considerable chal-
lenge to teach as it emerges from a complex interplay of separate and often
seemingly disjointed subjects such as quantum optics, semiconductor band struc-
turc, or the physics of carricr transport in electronic devices. As a result, the
student (or lecturer) is left to navigate through a vast litcrature, often found to be
confusing and incoherent.

The aim of this text is to teach optoelectronics as a science in itsclf. To do so, a
tailored presentation of its various sub-disciplines is required, emphasizing within
cach of these, those concepts which are key to the study of optoelectronics. Also,
we were determined to offer a partial description of quantum mechanics oriented
towards its application in optoelectronics. We have thercfore limited ourselves to a
utilitarian trcatment without elaborating on many fundamental concepts such as
clectron spin or spherical harmonic solutions to the hydrogen atom. On the other
hand, we have placed emphasis on developing formalisms such as those involved
in the quantization of the electromagnetic field (well suited to a discusston of
spontancous ¢mission), or the density matrix formalism (of value in treating
problems in non-lincar optics).

Similarly, our treatment of semiconductor physics ignores any discussion of the
cffect of the crystallographic structure in these materials. Rather, a priori usc is
made of the semiconductor band structures which implicitly incorporate these
effects on the clectrical and optical propertics of these materials. In carrying out
our rather utilitarian-minded presentation of these disciplines, we have claimed as
ours Erwin Schrodinger’s maxim that it mattered little whether his theory be an
exact description of reality insofar as it proved itself useful.

Wc have sought in this work to underline wherever possible the coherence of the
concepts touched on in each of these different areas of physics, as it is from this
vantage point that optoclectronics may be seen as a science in its own right. There
cxists, for mstance, a profound parallel between the behaviour of an electron in a
quantum well and that of an electromagnctic wave in an optical waveguide. As
well, one finds between the photon statistics of black bodies, the mechanics of
quantum transitions within semiconductor band structures and the statistics of
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Preface

charge carriers in these materials, an entanglement of concepts comprising the
basis for infrared detection. In the same spirit, this work does not pretend to
present an exhaustive list of all known optoelectronic devices. Such an effort could
only come at the cost of the overall coherence aimed at in this work, and add to the
type of confusion we have claimed as our encmy. The goal is rather to present
those optoelectronic concepts which will allow an overall understanding of prin-
ciples necessary in solving problems of a general or device-specific nature. Thus,
only the analysis of generic clusses of optoclectronic components will be under-
taken here without entering into the labyrinth offered by more particular applica-
tions.

Lastly, regarding the problem of notation (a problem inherent to any multidis-
ciplinary study). we have chosen simply to follow the lead of standard physics
notation in any given chapter. Thus, the symbol *«" may be used indiscriminately to
represent the permittivity, the quantum confinement energy, or the saturation
cocfficient of a semiconductor laser. We could have attempted the introduction of
various notations for each of these different uses based on the Latin, Greek, and
Hebrew character sets, but we realized that cven these would have soon been
exhausted. We have thus chosen merely to redefine in each chapter the correspon-
dence between the symbols and their respective notions.

The authors wish to thank all those having assisted with the preparation of this
manuscript, such as Erwan LeCochec, Andrea Fiore, Arnaud Fily, Jean-Yves
Duboz, Eric Costard. Florence Binet, Eric Herniou, Jean-Dominique Orwen,
Anna Rakovska, and Anne Rosencher among many others. This work could never
have scen the light of day without the support of ONERA and THALES (ex
THOMSON-CSF) and most particularly the encouragement of Mr Pierre Tour-
nois, formerly scientific director of THOMSON-CSF. Finally, the authors are
deeply indebted to Paul Piva, whose translation from French to English reflects
his competence, intelligence, and culture.
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Quantum mechanics of the electron

Introduction

This chapter reviews the fundamental principles and techniques of quantum
mechanics that are necessary to understand the subject of optoclectronics. Often,
concepts are not presented in depth: the aim, rather, is 1o provide the tools and
notation required to work through this book. Thus, in spite of their immense
importance in other areas of physics, and the severe scientific injustice resulting
from their being placed aside, we shall pass almost entirely in silence over Heisen-
berg’s uncertainty principle, spherical harmonics, electron spin, etc. The reader
wishing to deepen his/her understanding of these concepts is greatly encouraged to
read or reread the remarkable work by C. Cohen-Tannoudji et al. (1992).

1.2

The postulates of quantum mechanics

We consider an clectron of charge ¢ and mass m, subjected to a generalized
potential of the form Wr,1) varying in three-dimensional space r, and time .
Quantum mechanics tells us that the notion of a classical electron trajectory loses
its meaning when the distance over which this potential varies is of the order of the
de Broglie wavelength (). This length is given by:

P 2nh ~_1.23(nm) (1)
. \/Zm(,E J VY) '

where /1 is Planck’s constant (1.04 > 107%Js™"), Vis the average potential experi-
enced by the particle, and E is the energy of the particle. We will see that in a
crystalline solid where clectrons are subjected to spatially varying potentials of the
orderof 5eV (IeV = 1.6 x 10 '°)), their de Broglie wavelength turns out to be of
the order of 5A. As this length corresponds to the interatomic distance between
atoms in a crystalline lattice, conduction electrons in this medium will be expected
to display interference effects specific to the mechanics of wave-motion. These
effects (studied in Chapter 5) are the origin of the semiconductor band gap, and
cannot readily be discussed in terms of classical theories based upon the notion of
a well-defined trajectory.

Quantum mechanics also teaches us that we must forgo the idea of a trajectory
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in favour ol @ more subtle description in terms of quantum states and wavefunc-
tions. The clectron is then represented by a state vector evolving in time (1) >. One
of the strongest postulates of quantum mechanics is that all these state vectors
span a Hilbert space. For instance, the existence of linear combinations of states
(which leads to dramatic effects such as molecular stability, cnergy bandgaps, . . .)
is a dircct conscquence of this postulate. This vector space possesses a Hermitian
scalar product, whose physical significance will be given later. We will use Dirac
notation to represent the scalar product between two vector states i, > and iy, ) as
(sl > Now, we recall the properties of a Hermitian scalar product:

Pl > = (™

Cplahy + s> = alblh > + S<Phpry)

gy A+ fipoliby = 2%l + oD

¥l ) real, positive, and zero if and only if [/ > = 0

(1.2)

where the asterisk indicates that the complex conjugate is taken. By definition a
physical state possesses a norm of unity, which is to say that [W(t)> is a physical
state 1f:

Pl = 1 (1.3)

A certain number of linear operators act within this Hilbert space. A second
postulate of quantum mechanics is that classically measurable quantities such as
position, cnergy, etc. are represented by Hermitian operators A4 (i.e. operators
such that A" = A, where ¥ is the adjoint or Hermitian conjugate) called observables,
and that the result of the measurement of such an observable can only be one of
the eigenvalues associated with the observable. If the ensemble of cigenvalues of
the observable A4 forms a discrete set, then the set of ali possible measurements of a
system are given by the o, solutions of the eigenvalue equation:

Al = a > (1.4)

As the observable operators are Hermitian, it follows that their eigenvalues are
necessarily real (consistent with the familiar fact that the result of a physical
measurement is a real number). We also define the commutator of two operators A
and B as:

[A,B] = AB — BA (1.5)

[t can be shown that if two operators commute (i.c. if their commutator equals
zero), then they share a complete set of simultaneous eigenvectors. A noteworthy
consequence of this is that physical states exist in which the results of measurement
of both of these observables (4 and B) can be obtained simultaneously with
certainty: these are their common eigenstates.



