Optoelectronics

Emmanuel Rosencher and Borge Vinter

65

Optoelectronics

Emmanuel Rosencher

Research Director French Aerospace Research Agency (ONERA, France) Professor at the Ecole Polytechnique (Paris, France)

Borge Vinter

Senior Scientist THALES Research and Technology

Translated by Dr Paul G. Piva

Optoelectronics is a practical and self-contained graduate-level textbook and reference, which will be of great value to both students and practising engineers in the field. Sophisticated concepts are introduced by the authors in a clear and coherent way, including such topics as quantum mechanics of electron photon interaction, quantization of the electromagnetic field, semiconductor properties, quantum theory of heterostructures, and non-linear optics. The book builds on these concepts to describe the physics, properties, and performances of the main optoelectronic devices: light emitting diodes, quantum well lasers, photodetectors, optical parametric oscillators, and waveguides. Emphasis is placed on the unifying theoretical analogies of optoelectronics, such as equivalence of quantization in heterostructure wells and waveguide modes, entanglement of blackbody radiation and semiconductor statistics. The book concludes by presenting the latest devices, including vertical surface emitting lasers, quantum well infrared photodetectors, quantum cascade lasers, and optical frequency converters.

For Nadia, Anne, Julien, and Clara, for their patience with all my love.

For Nadia who understands so many other things.

Preface

The field of optoelectronics is currently in full expansion, drawing to its classrooms and laboratories numerous science and engineering students eager to master the discipline. From the lecturer's perspective, optoelectronics is a considerable challenge to teach as it emerges from a complex interplay of separate and often seemingly disjointed subjects such as quantum optics, semiconductor band structure, or the physics of carrier transport in electronic devices. As a result, the student (or lecturer) is left to navigate through a vast literature, often found to be confusing and incoherent.

The aim of this text is to teach optoelectronics as a science in itself. To do so, a tailored presentation of its various sub-disciplines is required, emphasizing within each of these, those concepts which are key to the study of optoelectronics. Also, we were determined to offer a partial description of quantum mechanics oriented towards its application in optoelectronics. We have therefore limited ourselves to a utilitarian treatment without elaborating on many fundamental concepts such as electron spin or spherical harmonic solutions to the hydrogen atom. On the other hand, we have placed emphasis on developing formalisms such as those involved in the quantization of the electromagnetic field (well suited to a discussion of spontaneous emission), or the density matrix formalism (of value in treating problems in non-linear optics).

Similarly, our treatment of semiconductor physics ignores any discussion of the effect of the crystallographic structure in these materials. Rather, a priori use is made of the semiconductor band structures which implicitly incorporate these effects on the electrical and optical properties of these materials. In carrying out our rather utilitarian-minded presentation of these disciplines, we have claimed as ours Erwin Schrödinger's maxim that it mattered little whether his theory be an exact description of reality insofar as it proved itself useful.

We have sought in this work to underline wherever possible the coherence of the concepts touched on in each of these different areas of physics, as it is from this vantage point that optoelectronics may be seen as a science in its own right. There exists, for instance, a profound parallel between the behaviour of an electron in a quantum well and that of an electromagnetic wave in an optical waveguide. As well, one finds between the photon statistics of black bodies, the mechanics of quantum transitions within semiconductor band structures and the statistics of

charge carriers in these materials, an entanglement of concepts comprising the basis for infrared detection. In the same spirit, this work does not pretend to present an exhaustive list of all known optoelectronic devices. Such an effort could only come at the cost of the overall coherence aimed at in this work, and add to the type of confusion we have claimed as our enemy. The goal is rather to present those optoelectronic concepts which will allow an overall understanding of principles necessary in solving problems of a general or device-specific nature. Thus, only the analysis of *generic classes* of optoelectronic components will be undertaken here without entering into the labyrinth offered by more particular applications.

Lastly, regarding the problem of notation (a problem inherent to any multidisciplinary study), we have chosen simply to follow the lead of standard physics notation in any given chapter. Thus, the symbol ' ϵ ' may be used indiscriminately to represent the permittivity, the quantum confinement energy, or the saturation coefficient of a semiconductor laser. We could have attempted the introduction of various notations for each of these different uses based on the Latin, Greek, and Hebrew character sets, but we realized that even these would have soon been exhausted. We have thus chosen merely to redefine in each chapter the correspondence between the symbols and their respective notions.

The authors wish to thank all those having assisted with the preparation of this manuscript, such as Erwan LeCochec, Andrea Fiore, Arnaud Fily, Jean-Yves Duboz, Eric Costard, Florence Binet, Eric Herniou, Jean-Dominique Orwen, Anna Rakovska, and Anne Rosencher among many others. This work could never have seen the light of day without the support of ONERA and THALES (ex THOMSON-CSF) and most particularly the encouragement of Mr Pierre Tournois, formerly scientific director of THOMSON-CSF. Finally, the authors are deeply indebted to Paul Piva, whose translation from French to English reflects his competence, intelligence, and culture.

Properties of common semiconductors

 2.0×10^{16} 0.18 6.4794 16.8 1500 0.236 0.014 0.016 80 000 direct 0.42 18.1 19.2 InSb 40.1 4.3×10^{12} 0.70 6.096 15.69 0.047 direct 0.05 5000 1500 GaSb 0.813.3 4.4 6.2 1.2×10^{8} 1.344 5.8688 2.56 0.073 1.424 lirect 0.12 0.605.045000 180 1.6 ЧЦ 3.0×10^{6} indirect 2.350 2.272 5.4505 11.1 0.254 0.670.17 4.05 0.491.25 4.8 GaP 200 150 1.3×10^{15} 0.354 6.0583 15.15 direct 0.418 0.023 0.026 30 000 0.40480 InAs 20.4 8.3 9.1 $0.15(\Gamma)$ indirect 2.229 2.17 5.6600 10.06 0.79 0.15 3.45 0.68 1.3 AIAs 400 100 1.8×10^{6} 1.519 1.424 5.6533 13.1 0.067 direct 0.087 0.50 GaAs 8000 400 7.0 2.3 2.4×10^{13} 0.664 5.64613 16.2 ndirect 0.0823 0.7440.2840.043 1.59 3900 1800 13.4 4.3 5.7 g 1.5×10^{10} 1.170 1.124 5.43095 ndirect 0.1905 0.9163 0.537 0.153 1.9 4.25 0.32 1.45 1450 370 ŝ Electron longitudinal, m_{el}/m_0 Relative permittivity, $\varepsilon_{\mathrm{sv}} \varepsilon_0$ Electron traverse, m_{et}/m_0 Intrinsic density, $n_i(\text{cm}^{-3})$ Lattice constant. a₀ A Electron, μ_e (cm² Vs⁻¹) Hole, $\mu_h (\text{cm}^2 \text{ V}^{-1} \text{ s}^{-1})$ Heavy hole, m_{hh}/m_0 Light hole, m_{lh}/m_0 Luttinger parameters (a) $T = 300 \,\mathrm{K}$ Effective mass $\widehat{a} T = 0 \mathrm{K}$ $E_{g}(eV)$ Bandgap Mobility :7 2:

Further reading

General references useful in obtaining values for semiconductor properties:

÷

O. Madelung, ed., Semiconductors, Group IV Elements and III-V Compounds, in Data in Science and Technology, Springer, Berlin (1996). K. H. Hellwege, ed., Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, Springer, Berlin. Recent review works:

B. L. Weiss, ed., EMIS Dataviews Series, INSPEC, London.

Contents

	XV
ommon semiconductors	xvii
echanics of the electron	1
tion	1
ulates of quantum mechanics	1
-independent Schrödinger equation	6
tionary states	6
culation of stationary states in a one-dimensional potential	7
ntum well	8
e general case	8
e infinite square well	14
lependent perturbation theory	15
pendent perturbations and transition probabilities	18
e general case	18
usoidal perturbation	20
ity matrix	23
e quantum ensembles	24
ked quantum ensembles	24
nsity matrix and relaxation time for a two-level system	26
o Chapter 1	29
s posed by continuums: the fictitious quantum box	
•	29
-	33
	37
	41
n probabilities and Rabi oscillations	50
	echanics of the electron tion ulates of quantum mechanics -independent Schrödinger equation tionary states culation of stationary states in a one-dimensional potential futum well general case infinite square well ependent perturbation theory bendent perturbations and transition probabilities general case usoidal perturbation ity matrix e quantum ensembles ted quantum ensembles ted quantum ensembles test quantum ensembles

2	Qu	antum mechanics of the photon	56
	2.1	Introduction	56
	2.2	Maxwell's equations in reciprocal space	56
	2.3		58
	2.4		61
	2.5	L Contraction of the second seco	63
	2.6		67
	2.7	Blackbody radiation	71
	Con	nplement to Chapter 2	76
	2.A	Radiation field for an oscillating charge: the Lorentz gauge	76
	2.B		84
3	Qua	antum mechanics of electron–photon interaction	91
	3.1	Introduction	91
	3.2	Dipolar interaction Hamiltonian for electrons and photons	91
	3.3	Linear optical susceptibility obtained by the density matrix	93
	3.4	Linear optical susceptibility: absorption and optical gain	96
	3.5	The rate equations	100
		3.5.1 Adiabatic approximation and corpuscular interpretation	100
		3.5.2 Stimulated emission	101
		3.5.3 Absorption saturation	102
	3.6	Spontaneous emission and radiative lifetime	104
		3.6.1 Spontaneous emission	104
	27	3.6.2 The rate equations including spontaneous emission	109
	3.7	Polychromatic transitions and Einstein's equations	110
	3.8	Rate equations revisited	111
		3.8.1 Monochromatic single-mode waves3.8.2 Multimode monochromatic waves	112
		3.8.3 Polychromatic waves	113 114
	Com	plement to Chapter 3	115
	3.A	Homogeneous and inhomogeneous broadening: coherence of light	115
		3.A.1 Homogeneous broadening	116
		3.A.2 Inhomogeneous broadening	120
	3.B	Second-order time-dependent perturbations	123

viii

	3.C	Einstein coefficients in two limiting cases: quasi-monochromatic	
		and broadband optical transitions	131
	3.D	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		Thomas-Reiche-Kuhn sum rule	133
4	Las	er oscillations	139
	4.1	Introduction	120
	4.2	Population inversion and optical amplification	139
	••••	4.2.1 Population inversion	139
		4.2.2 Optical amplification and gain saturation	139 141
	4.3	Three- and four-level systems	141
	4.4	Optical resonators and laser threshold	143
	4.5	Laser characteristics	140
		4.5.1 Internal laser characteristics and gain clamping	150
		4.5.2 Output power	150
		4.5.3 Spectral characteristics	154
	4.6	Cavity rate equations and the dynamic behaviour of lasers	156
		4.6.1 Damped oscillations	158
		4.6.2 Laser cavity dumping by loss modulation (Q-switching)	159
		4.6.3 Mode locking	163
	Com	plement to Chapter 4	167
	4.A	The effect of spontaneous emission and photon condensation	167
	4.B	Saturation in laser amplifiers	171
	4.C	Electrodynamic laser equations: electromagnetic foundations for mode locking	178
	4.D	The Schawlow Townes limit and Langevin-noise force	185
	4.E	A case study: diode pumped lasers	193
5		iconductor band structure	199
			177
	5.1	Introduction	199
	5.2	Crystal structures, Bloch functions, and the Brillouin zone	199
	5.3	Energy bands	204
	5.4	Effective mass and density of states	206
	5.5	Dynamic interpretation of effective mass and the concept of holes	210

ix___

5.6.1 Fermi statistics and the Fermi level	216
5.6.2 Intrinsic semiconductors	221
5.6.3 Doped semiconductors	222
5.6.4 Quasi-Fermi level in a non-equilibrium system	224
Complement to Chapter 5	227
5.A The nearly free electron model	227
5.B Linear combination of atomic orbitals: the tight binding model	230
5.C Kane's $\mathbf{k} \cdot \mathbf{p}$ method	234
5.D Deep defects in semiconductors	242
6 Electronic properties of semiconductors	245
6.1 Introduction	
6.2 Boltzmann's equation	245
6.3 Scattering mechanisms	245
6.4 Hot electrons	251
6.4.1 Warm electrons	257
6.4.2 Hot electrons: saturation velocity	257
6.4.3 Hot electrons: negative differential velocity	258 260
6.5 Recombination	260
6.6 Transport equations in a semiconductor	266
Complement to Chapter 6	271
6.A The Hall effect	
6.B Optical phonons and the Fröhlich interaction	271
6.B.1 Phonons	273
6.B.2 The Fröhlich interaction	273
6.C Avalanche breakdown	280 285
6.D Auger recombination	283 289
7 Optical properties of semiconductors	296
7.1 Introduction	296
7.2 Dipolar elements in direct gap semiconductors	296
7.3 Optical susceptibility of a semiconductor	301
7.4 Absorption and spontaneous emission	306

7.5	Bimolecular recombination coefficient	313
7.6	Conditions for optical amplification in semiconductors	316
Con	nplement to Chapter 7	321
7.A	The Franz-Keldysh-effect electromodulator	321
7.B	Optical index of semiconductors	328
	7.B.1 Mid- and far-infrared regions	329
	7.B.2 Near gap regime	330
7.C	Free-carrier absorption	333
	niconductor heterostructures and quantum wells	342
 8.1	Introduction	342
8.2	Envelope function formalism	344
8.3	The quantum well	350
8.4	Density of states and statistics in a quantum well	354
8.5	Optical interband transitions in a quantum well	358
	8.5.1 Hole states in the valence bands	358
	8.5.2 Optical transitions between the valence and conduction bands	359
8.6	Optical intersubband transitions in a quantum well	365
8.7	Optical absorption and angle of incidence	369
	8.7.1 Summary for interband and intersubband transition rates	369
	8.7.2 Influence of the angle of incidence	370
Com	plement to Chapter 8	377
8.A	Quantum wires and boxes	377
8.B	Excitons	380
	8.B.1 Three-dimensional excitons	381
	8.B.2 Two-dimensional excitons	385
8.C	Quantum confined Stark effect and the SEED electromodulator	388
8.D	Valence subbands	392
- Wa	veguides	396
 9.1	Introduction	396
9.2	A geometrical approach to waveguides	396
9.3	An oscillatory approach to waveguides	400
9.4	Optical confinement	407
		• • • •

8

	9.5	Interaction between guided modes: coupled mode theory	410
	Com	plement to Chapter 9	414
	9.A	Optical coupling between guides: electro-optic switches	414
	9.B	Bragg waveguides	421
	9.C	1)	427
		9.C.1 TE mode in TE mode out	427
	0.5	9.C.2 TE mode in TM mode out	432
	9.D	Fabry-Pérot cavities and Bragg reflectors	434
		9.D.1 The Fabry-Pérot cavity	437
		9.D.2 Bragg mirrors	442
10	Eler	nents of device physics	447
	10.1	Introduction	447
	10.2	Surface phenomena	448
	10.3	The Schottky junction	451
	10.4	The $p - n$ junction	456
	Com	plement to Chapter 10	466
	10.A	A few variants of the diode	466
		10.A.1 $p - n$ heterojunction diode	466
		10.A.2 The $p + i - n$ diode	467
	10. B	Diode leakage current	470
11	Sem	iconductor photodetectors	475
	11.1	Introduction	475
	11.2	Distribution of carriers in a photoexcited semiconductor	475
	11.3	Photoconductors	481
		11.3.1 Photoconduction gain	481
		11.3.2 Photoconductor detectivity	484
		11.3.3 Time response of a photoconductor	486
	11.4	Photovoltaic detectors	488
		11.4.1 Photodiode detectivity	492
		11.4.2 Time response of a photodiode	494
	11.5	Internal emission photodetector	497
	11.6	Quantum well photodetectors (QWIPs)	500
	11.7	Avalanche photodetectors	509

.

Com	plement to Chapter 11	513
11.A	Detector noise	513
	11.A.1 Fluctuations	514
	11.A.2 Physical origin of noise	518
	11.A.3 Thermal noise	518
	11.A.4 Generation-recombination noise	521
	11.A.5 Multiplication noise	525
11.B	Detectivity limits: performance limits due to background (BLIP)	530
Opti	cal frequency conversion	538
12.1	Introduction	538
12.2	A mechanical description for second harmonic frequency generation	538
12.3	An electromagnetic description of quadratic non-linear	220
	optical interaction	543
12.4	Optical second harmonic generation	546
12.5	Manley-Rowe relations	550
12.6	Parametric amplification	551
12.7	Optical parametric oscillators (OPOs)	554
	12.7.1 Simply resonant optical parametric oscillators (SROPOs)	554
	12.7.2 Doubly resonant optical parametric oscillator (DROPO)	557
12.8	Sum frequency, difference frequency, and parametric oscillation	560
Comp	plement to Chapter 12	565
12.A	A quantum model for quadratic non-linear susceptibility	565
12.B		572
	12.B.1 Birefringent phase matching	573
	12.B.2 Quasi-phase matching	579
12.C	Pump depletion in parametric interactions	582
12.D		
12.E		587
12.L 12.F	Parametric interactions in laser cavities	596
12.1	Continuous wave optical parametric oscillator characteristics 12.F.1 Singly resonant OPO	602
	12.F.2 Doubly resonant OPO: the balanced DROPO	603
	12.F.3 Doubly resonant OPO: the general case	608
	and Doubly roomant of O, the general case	610

Contents

13	Ligh	t emitting diodes and laser diodes	613
	13.1	Introduction	613
	13.2	Electrical injection and non-equilibrium carrier densities	613
	13.3	Electroluminescent diodes	617
		13.3.1 Electroluminescence	617
		13.3.2 Internal and external efficiencies for LEDs	619
		13.3.3 A few device issues	623
	13.4	Optical amplification in heterojunction diodes	624
	13.5	Double heterojunction laser diodes	629
		13.5.1 Laser threshold	629
		13.5.2 Output power	634
	13.6	Quantum well laser diodes	637
		13.6.1 Optical amplification in a quantum well structure: general case	637
		13.6.2 Transparency threshold	641
		13.6.3 Laser threshold for a quantum well laser	647
		13.6.4 Scaling rule for multi-quantum well lasers	649
	13.7	j militar di labor di dabor di dabor	652
	13.8	Characteristics of laser diode emission	655
		13.8.1 Spectral distribution	655
		13.8.2 Spatial distribution	656
	Comp	plement to Chapter 13	660
	13.A	Distributed feedback (DFB) lasers	660
		Strained quantum well lasers	665
	13.C	Vertical cavity surface emitting lasers (VCSELs)	671
		13.C.1 Conditions for achieving threshold in a VCSEL	671
		13.C.2 VCSEL performance	675
	13.D	Thermal aspects of laser diodes and high power devices	676
	13.E	Spontaneous emission in semiconductor lasers	683
	13.F	Gain saturation and the K factor	690
	13.G	Laser diode noise and linewidth	696
		13.G.1 Linewidth broadening	700
		13.G.2 Relative intensity noise (RIN) and optical link budget	701
	13.H	Unipolar quantum cascade lasers	704
	13.I	Mode competition: cross gain modulators	708
	Index		713

xiv

1 Quantum mechanics of the electron

1.1 Introduction

This chapter reviews the fundamental principles and techniques of quantum mechanics that are necessary to understand the subject of optoelectronics. Often, concepts are not presented in depth: the aim, rather, is to provide the tools and notation required to work through this book. Thus, in spite of their immense importance in other areas of physics, and the severe scientific injustice resulting from their being placed aside, we shall pass almost entirely in silence over Heisenberg's uncertainty principle, spherical harmonics, electron spin, etc. The reader wishing to deepen his/her understanding of these concepts is greatly encouraged to read or reread the remarkable work by C. Cohen-Tannoudji et al. (1992).

1.2 The postulates of quantum mechanics

We consider an electron of charge q and mass m_e subjected to a generalized potential of the form $V(\mathbf{r},t)$ varying in three-dimensional space \mathbf{r} , and time t. Quantum mechanics tells us that the notion of a classical electron trajectory loses its meaning when the distance over which this potential varies is of the order of the *de Broglie wavelength* (λ_{DB}). This length is given by:

$$\lambda_{\rm DB} = \frac{2\pi h}{\sqrt{2m_e E}} \approx \frac{1.23\,(\rm nm)}{\sqrt{V(\rm V)}} \tag{1.1}$$

where h is *Planck's constant* $(1.04 \times 10^{-34} \text{ J s}^{-1})$, V is the average potential experienced by the particle, and E is the energy of the particle. We will see that in a crystalline solid where electrons are subjected to spatially varying potentials of the order of 5 eV ($1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$), their *de Broglie* wavelength turns out to be of the order of 5 Å. As this length corresponds to the interatomic distance between atoms in a crystalline lattice, conduction electrons in this medium will be expected to display interference effects specific to the mechanics of wave-motion. These effects (studied in Chapter 5) are the origin of the semiconductor band gap, and cannot readily be discussed in terms of classical theories based upon the notion of a well-defined trajectory.

Quantum mechanics also teaches us that we must forgo the idea of a trajectory

in favour of a more subtle description in terms of quantum states and wavefunctions. The electron is then represented by a state vector evolving in time $|\psi(t)\rangle$. One of the strongest postulates of quantum mechanics is that all these state vectors span a Hilbert space. For instance, the existence of linear combinations of states (which leads to dramatic effects such as molecular stability, energy bandgaps, . . .) is a direct consequence of this postulate. This vector space possesses a Hermitian scalar product, whose physical significance will be given later. We will use Dirac notation to represent the scalar product between two vector states $|\psi_1\rangle$ and $|\psi_2\rangle$ as $\langle \psi_2 | \psi_1 \rangle$. Now, we recall the properties of a Hermitian scalar product:

 $\left\{ \begin{array}{l} \langle \phi | \psi \rangle = \langle \psi | \phi \rangle^{*} \\ \langle \phi | \alpha \psi_{1} + \beta \psi_{2} \rangle = \alpha \langle \phi | \psi_{1} \rangle + \beta \langle \phi | \psi_{2} \rangle \\ \langle \alpha \phi_{1} + \beta \phi_{2} | \psi \rangle = \alpha^{*} \langle \phi_{1} | \psi \rangle + \beta^{*} \langle \phi_{2} | \psi \rangle \\ \langle \psi | \psi \rangle \text{ real, positive, and zero if and only if } | \psi \rangle = 0 \end{array} \right\}$ (1.2)

where the asterisk indicates that the complex conjugate is taken. By definition a physical state possesses a norm of unity, which is to say that $|\psi(t)\rangle$ is a physical state if:

$$\langle \psi(t) | \psi(t) \rangle = 1 \tag{1.3}$$

A certain number of linear operators act within this Hilbert space. A second postulate of quantum mechanics is that classically measurable quantities such as position, energy, etc. are represented by Hermitian operators A (i.e. operators such that $A^{\dagger} = A$, where \dagger is the *adjoint* or *Hermitian conjugate*) called *observables*, and that the result of the measurement of such an observable can only be one of the eigenvalues associated with the observable. If the ensemble of eigenvalues of the observable A forms a discrete set, then the set of all possible *measurements* of a system are given by the a_n solutions of the eigenvalue equation:

$$A|\psi_n\rangle = a_n|\psi_n\rangle \tag{1.4}$$

As the observable operators are Hermitian, it follows that their eigenvalues are necessarily real (consistent with the familiar fact that the result of a physical measurement is a real number). We also define the commutator of two operators A and B as:

$$[A,B] = AB - BA \tag{1.5}$$

It can be shown that if two operators commute (i.e. if their commutator equals zero), then they share a complete set of simultaneous eigenvectors. A noteworthy consequence of this is that physical states exist in which the results of measurement of both of these observables (A and B) can be obtained simultaneously with certainty: these are their common eigenstates.

. . . .