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NONLINEAR COMPENSATING NETWORKS FOR FEEDBACK SYSTEMS

E, Mishkin and J. G. Truxal
Microwave Research Institute
rolytechnic Institute of Brooklyn
Brooklyn, New York

INTRODUCTION

If we consider nonlinear feedback systems
which are unstable as a primary consequence of the
nonlinearity (i.e., in which the presence and na-
ture of the nonlinearity plays a key role in the
oscillation), stabilization has in the past gener-
ally taken either of two forms: (1) the nonlinear-
ity can be cancelled by another nonlinearity which
results in a linear, overall system; or (2) the
describing-function analysis is the starting point
for an attempt to find, by suitable exercise of
the designer's ingenuity and imagination, a non-
linear compensation network which will appropri-
ately shapé the amplitude and/or frequency loci
such that intersection is avoided.

Jf we restrict our consideration to non-
linearities describable in terms of describing
functions (i.e., if we exclude for example multi-
plicative nonlinearities), the second approach
holds considerable promise. An alternate approach,
valid at least whenever the nonlinearity can be
represented as a frequency-independent block in
the system block diagram, has been proposed by
several authors in essentially the form shown in
Fig. 1 or an equivalent configuration. Here 815

n, and g, represent the given system (which of
course ip general would be very much more complex),
with g) and g, linear and n nonlinear. If the
compensating elements ny and g9, are chosen such
that ny is the complement of n [ i.e., (mp+my,,)
is a 1inear function of my] and g,, 1s identified
with 8, the distortion introduced in the fed-back
signal by n is exactly cancelled by the minor-loop
feedback. Hence, insofar as stability is concern~
ed, the overall system is linear and no assumption
re the validity of the describing function is made,
although the actual closed~loop system is certaip-
1y still nonlinear.

While such an approach looks promising
o;n paper, itwo primary difficulties arise in prac-
tice:

(1) The 820 and, to a lesser extent, m
blocks are ordinarily far more complex than desira-
ble (or necessary). This difficulty is particular-
1y apt to arise if the original nonlinearity re-
quires an appreciable expansion of the original
block diagram in order to leave the nonlinearity
represented as a frequency-independent block (as *
in the case of the manipulation required with
backlash or velocity saturation),

(2) Certain difficulties may arise in
practice because the minor loop may respond so fast
and accurately that the 87 block is never actuated
(e.g., if n contains a dead zone, g, an integration,

and the input is a ramp).

The answer to both difficulties lies in
easing the requirements on the specific character-
istics of the elements in the minor loop. It is
the purpose of the following discussion to indi-
cate the form design might take, then, if we star-
ted from the ideal-model philosophy exemplified in
Fig. 1, but then modified this idealism to bring
both items (1) and (2) above into consideration.
The discussion is phrased in terms of the specific
examples of hystersis as the n element and of a
very simple, two-nonlinearity system. At the
present time, the bounds of appreciability and
usefulness of this approach to nonlinear compen-~
sation are not clear.

The Describing Function

. The nonlinear system shown in Fig, 2a
contains linear elements g) and gy and a nonlinear
component n that may represent a hysteris phenome-
non inherent in the system. The relationship be-
tween and m,, the input and output respectively
of the fionlinear element, is shown in Fig. 2b.

We shall concern ourselves mainly with
the problem of the system stability that may be
upset by the varying nature and level of the trans-—
mitted signal. Under unstable operation conditions,
the signals appearing at the various points of the
system will have an alternating character with re-
spect to time. In general, they will be nonsinu-
soidal, but if €158, present a transfer function
similar to that of & low-pass filter, it will be
reasonable to assume that at least m, the signal
at the input to the nonlinearity, will be nearly
sinusoidal,

Further analysis will be greatly facili-
tated, if n is replaced by a linear element with a
complex gain N that is a function of the amplitude
M; of the signal m. The choice of N is to be made
so as to minimize the mean square error

T
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N presents in other words the describing function:
i.e. the complex ratio between Mp, the amplitude
of the first harmonic of the output, and the arp-
litude My of the sinusoidal-input to the nonlinear

element n.

The error made by this type of present-
ing a nonlinear element consists of all the high-
er harmonics that are part of mo(t). A better
approximetion can be obtained, If necessary, by
considering the higher harmonics of mz(t) as addi-
tional sinusoidal disturbing signals of appropri-
ate frequencies--their amplitudes depend upon the
level of the n signal,

Fig.. 3 shows the describing function N,
its magnitude |N| and phase shift x§ 88 functions
of the relative amplitude M, /H.

Stability Analysis

For the system shown in Fig., 2a

(}1 N(}2
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The stability analysis can be performed with the
aid of the Nyquist plot shown in Fig., 4. The sys-
tem is stable at low amplitudes M . At P the
Gl(:j(o) Gz(jm) curve cuts the wandering - 1/¥ point,

the system becomes unstable and the ampli tude

keeps on increasing until a stable mode of oscil-
lations is established at Q at about 2 ¥2%/geq,

There are several methods by which this
system can be stabilized. The gain K of the line-
ar part when sufficiently decreased will cause the
System to be stable. Similarly the linear part
Gy, Gy can be compensated in accordance with well
known methods so as to yield a resultant G(jw)
curve that will neither encircle nor cut the mov-
ing - 1/N point. We shall concern ourselves here
with compensating methods by means of nonlinear
networks which can be inserted in parallel or ra-
ther in a minor feedback loop. The advantages of
this method will be shown later, but it is clear
that in general, if anywhere nearly similar dynam-
ie characteristics are to be achieved over a rea-
songble range of signal amplitudes, nonlinear sys-
tems must be compensated by nonlinear networks.

Nonlinear Compensation

It is gpparent directly from the Nyquist
plot in Fig, L that, in order to stabilize the sSys-
tem shown, one must limit the possible growth of
the signal at m or m,. This can be accomplished

by inserting a nonlinearity m, in parallel with
n, followed by a linear model gy, (see Fig. 1).
The transfer function Gy, is to equal Go. The my
characteristic is shown in Fig. 5. The deadzone
abscissa My, in Fig. 5, is to be somewhat smaller
than the value M for which the system becomes un-
stable and the absolute value of the negative
slope of oy is to equal the slope of N.

Insofar as stability is concerned, amd
considering Gyo = Gp, the diagram of the compen—
sated system can be redrawn as in Fig. 6. A new
describing function for the composite nonlinear-
ity n + nj is to be obtained by adding the ordi-
nates of the gains and phase-angles of the indi-
vidual deseribing funetions N and Ny (see Fig. 7).

The dashed line on Fig. L is the - 1/N+N; curve
for amplitudes M) MO. _

In general, the slopes of n and m can-
not be perfectly matched, Assuming that the
slope of n is unity, while that of ny is = 0.9,
the resultant value of |N| + |Nj| is 0.1, for
M, — ®. In Fig. L, the end point of the
- 1/N + N; curve will move from infinity to - 10.
Should there be a need for increased relative
stability, for a certain range of amplitudes My,
the absolute value of the slope of N is to be
increased, for this range of amplitudes.

The compensation method by means of
nonlinear networks has certain advantages over
the method of adjusting the linear portion by
reducing the gain K. In the latter case, the
system overall performance is being slowed down,
while the addition of ny introduces a form of an
automatic gain control at signal levels which the
original system cannot handle and remain stable.

The compensating nonlinearity n and
the model gy, appear in the minor loop, which is
to transfer a signal at as low a power level as
possible. It should therefore be easy to realize
the stabilizing elements using electrical and
mechanical transducers.

Overall Model-Feedback Design

It has been assumed in the previous
section that the model gy, h&s an identicsl trans-
fer function with that of 8o+ Go may present a
complex block and it might be advantegeous to
retain the freedom in designing both, the linear
part guy and the nonlinear network mof the sta-
bilizing model feedback loop.

The block diagram of Fig. 1 can be re-
arranged as shown in Fig. 8, The transfer func-
tion of the g(n) block is

cY:].
G(n) = mG—Z- (5)

When the signal at m is small--at a
level lower than that corresponding teo point p



in Fig. L-- the M"open-loop" G(n) is stable. The
model loop ny g, is not to exercise yet any
stabilizing effect upon the system and the non-
lirearity ny may have a dead zone smaller than

p-the magnitude of at P, Between P and Q
the Gy (jw) Go(jw) locus encircles the - 1/N point
once; hence for values of m; between P and Q, the
G(n) function has a single pole in the right half
P plane. In this intervel them, nj and gp, have
to be chosen in such a way as to cause the over-
all G(n) Goo(jw) curve to encircle the new travel-
ling - 1/N + Y point once in the negative mathe~
matical sense.

G(n) depends upon the signal level at
m. To each value of m corresponds a different
G(n) curve. The above outlined procedure will
require the drawing of two G(n) curves correspond-
ing to the two extreme values of m.

Systems with Two Nonlinearities

Two nonlinearities may follow, or
parallel one another in a feedback control system,
When the nonlinear elements are frequency indepen-
dent, a resultant nonlinear relationship, between
the input to the first and the input of the follow-
ing element, can be derived from the characteris-
tics of the individual elements. One is then
confronted with the usual problem of a nonlinear
element in an otherwise linear system.

A more complicated problem oeccurs when
a frequency dependent linear network separates the
two nonlinearities, or when one of the nonlinear
elements is frequency dependent. The analysis
becomes very cumbersome as the properties of the
network are simultaneously amplitude and frequenty
dependent and are presented in the fot'm 01(‘ ?vfam:b
ly of curves instead of a single plot.l) 2} In
practice it involves the eid of a computing device,
In case of a single frequency~-deprendent nonlinear-
ity, frequently, the frequency and amplitude de-
- mendent parts can be sepsrated and Fhf enalysis of
the problem extensively simplified. 3

Tet n, and n, be two nonlinear elements,
ampli tude-dependent onfy, and g a linear network
arranged as shown in Fig. 10b. n, may present a
dead-zone phenomenon and n, a saturation effect.
The particular characteristics and the describing
functions and N2 are drawn in Fig., 9, Let g
be a single integration 1/p. When m 1is a sinu-
soldal signal of amplitude M) and in the stability
analysis of the overall system it is ressonable to
neglect all the higher harmonies of My, ny can be
best approximated by the describing function ¥,
The integration element 1/p discriminates against
the higher harmonics of My in proportion to the
order of the harmonic. The signal at m3 can be
considered as sinusoidal and the describing fune-
tion M, substituted for the nonlinear element n,.
Choosing particular values for the amplitude M3,
amplitude M, is obtained from Fig. 9a, and con-
secutively amplitudes M3 and Mh result from Figs. b

‘stabilized by means of the feedback model

(o]
and c. The ratio [N| = M /My, and the -$0° phase
shift caused by 1/p, constitute the resultant
describing function of the overall nonlinearity m
~g -ny. It is shown in form of a family of curves

in Fig. 10.
Stability Analysis

let n, in Fig. 2a, present the nm -g =ns
arrangement described in the previous section.
Fig. 11a shows the Nyquist plot for

-390 .
Gl (Jw) Ga (Jw) e = W e

and the - 1/IN| plot. The -90° phase shift of N,
causedaby the integration 1/p, is combined here
with the G)(Jw) Gp(jw) ploty At about we2md/geq
the phase angle of G, Gy € is -180°.

The - 1/|N| point travels along the real axi
.When

K is large enough, the Gy (Jw) Gp(jw) e"s”o

-eurve will cut the - 1/|N| plot at two points of

which the one corresponding to the lower signal
level M; presents an unstable mode of oscillation.
At the other point, M; is larger and the system
oscillates at a constant amplitude{stable limit
cycle.)

The above system will be unstable when
the tip of the - 1/{N| locus, for @ = 2, is en-
circled by the c'l(j"’) cz‘(jw) e =J900 plot.

When the m and no nonlinearities contain
no energy stormges the phase shift of then element is
caused by the g network only. This phase shift is
a function of the frequency and can be combined
with the G;(J») G,(jw) function. ' The Nyquist plot
will then determine the frequency at which the sys-
tem'will oscillate if unstable. For purposes of
Stability analysis the descriling function |N| of
the overall ny -g -np network is to be found for
this frequency only. The system exhibits a stable
Limit cycle when the G)(ju) Gp(3w) e=3 ®€ cuts the
- 1/|N| locus, drawn at the critical frequency o
for which the angle of cl(jw) G2(3‘°) e~ *g is -180°,
at two points. The-system will go in a destructive
mode of oscillations when the - 1/|N| plot is term-
inated inside the G (jo) 0,(jw) €™ € locus,

, Conclusions

Nonlinear systems can be effectively
loop
method. Systems with more than one nonlinear sle-
ment (containing no energy storages), when un--
stable oscillate atacertain critdcal - frequency,
They can be stablized with the aid of narrow band-
stop filters. In both cases additional work is
required in the resultant response of the system,



References

1. R. J. Kochenburger, "Limiting in Feed-
back Control Systems", Trans. A.I.E.E.,
Vol. 72, Part II, Applications and In-
dustry, pp. 180-19L, 1953.

2. J. G, Truxal, "Automatic Feedback Con-
trol System Synthesis", McGraw-Hill
Beok Co., M. Y. 1355, pp. 585-599.

3. G. Casserly and J. G. Truxal, "Measure-

ment and Stsbilization of KNonlinear
Feedback Systems", I.R.E. Convention
Record 1955, Part L, pp. 52-61.

Acknowledgement

The work reported on here has been
sponsored in part by the office of Ordnance Re-
search, U.S. Army -and the Air Force Office of
Scientific Research. The authors sincerely
acknowledge the important contributions made by
Mr. Kenneth R. Kaplan and Mr. Richard A. Haddad.

Fig. 1
Model compensation.

IN| *n

f'n -90
IN|
¢

i M
. Wt
Fig. 3
Describing function of hysteresis element.

Fig, 2
m— Nonlinear system.,
o
b
=1 N w20
BN (o} 2.5
| \\
TN, WP G {jw)Gyljw)
L AM
NN

Fig. 4
Nyquist plot for system with
a hysteresis clement,

T mz+m20
20
r 4 " m, + c
9 n I 02
" R 3
o -
m—e
"t Tmgo
Fig. 5
Characteristic of compensat- Fig. 6

ing nonlinear element nj.

6

Compensating system diagram for stability analysis.



— 90
N+N,
Mo M,
Ny
Fig. 7

Resultant describing function,

/SLOPE =
Yas -

ma

m ma

9(n)

920

Fig. 8

New block diagram,

Fig. 9

Characteristics and describing functions of the

individual elements.

—s :Nl | M3 w=2
|
w=3
I M, M2
. b. Ma . '~|T .
m, M, .
w2
2 [l
-2 ! M ’
?
2 m3
-2 4 N M'—Q
My
—_— N .
N3 ﬁk -90
2 M3 Fig. 10
Overall describing function.
c.
ws}
w2
-] w3 e e e e :
™ 5 7
wse m m m m
i {n 221, 2f s, 1
—M, .
______________ J
N L 6, (juiGytjwie 90" .
ws O
a. b.
Fig. 11

Nyquist plot for a two-nonlinearity system.

7



DIRECT SINTHESIS THROUGH BLOCK DIAGRAM SUBSTITUTIONS.

O Jo Mo Smdith
University of california
Berkeley, Caljfornia

Suwmmary

The direct synthesis of a system starts with
stating two restrictions: (1) +the unalteravle
components of the system; and (2) the undesired
signals. Two engineering judgments must next be
introduced: (1) a criteria for best; and (2) a
possible, realizable mode of action., These four
statements can be combined into a single block
diagram which is a statement of the best possible,
realizgble control, Ry means of certaim block
diagram substitutions, this mode of action repre-
sentation can be changed into the constructional
arrangement. Rules for the permissible block
diagram substitutions will be given., Examples
are given of the application of this method to
minimum-phase linear systems with not more than
one more pole than the number of zeros, to mini-
mum-phase linear systems with many more poles
than zeros, to dead-time systems, statistical pre-
dictors, and dead-beat control,

Unalterable Components and Undesired Signale,

Every problem in synthesis has certain re-
strictions, Because of cost or weight limitations
unalterable components may have too narrow a fre-
quency band for the signal spectrum, or too many
poles, or be non-linear, or perhaps be unstable,
The types of undesired signals that enter a sys-
tem are load forces or disturbances, noise, and
distortion from non-linearities. The more severe
these restrictions are, the more difficult it is
to find a realizable poscible mode of action,
However if one eliminates too many restrictions,
the synthesis problem becomes trivial,

Minimum Phase Linear System with One More Pole
than Number of Zeros.

This design sequence can best be illustrated
by reference to Figure 1. Figure la shows the
unalterable component and the undesired signal in
the given system, Examples of systems of this
sort are a velocity control where O, is the motor

torque, °L is the load torque, and 9, is the
shaft velocity. Or °L may represent the load
current in a voltage regulator, and OO represent
the regulated voltage. The unalterable dynamics,
1 .
1l +s8T

could just as well be written G(s), which must be
a minimum phase linear system with a denominator
polynomial of degree equal to or one more than the
degree of the numerator polynomial. The desired
system 1s an output function @ which is exactly
equal to an input function 8,. The desired sys=-
tem should therefore have a ~transmission or
transference of unity as shown in Figure 1b,

We will now hypothesize that the criteria
for the best system is absolutely zero error
between The input and the output We will further
hypothesize that there exists a solution for the
system using this eriteria and that this is a
realizable, possible mode of action., Therefore to
convert the given system in Figure la into the
desired system in Figure 1b one operates on the
input signal in Figure 1b with the inverse of the
unalterable transference and subtracts a signal
exactly equal to the load disturbance, Figure lc
is a statement of the realizable desired mode of
operation, It is not the finished design.

To obtain the finished design one uses a
series of block diagram substitution rules. The
first step in converting this block diagram into
the constructional arrangement, is to move the
signal compensating for the load disturbance to
the input. This results in OL passing through the

1/1+sT in Figure 1d, and being subtracted
directly from @, .

The next rule that we will introduce is that
a function may be generated by its inverse in
negative feedback around an infinite gain ampli-
fier. TFrom 8 plane root locus studies it can be
shown that this rule is true if the function has
an equal number of poles and zeros., It can also
be shomn that this rule is practically true, and
that the closed loop is stable, if the function
introduced in the negative feedback branch of the
closed locp has not more than one more pole than
the mmber of zeros. In other words, one can
generate a function which has one more zero than
the mumber of poles. The application of this rule
to the generation of the zero in Figure lc results
in the loop in Figure 1d,

The feedback loop which has been generated
wil) now be expanded by moving the branch point
after the amplifier through the load disturbance
and into the output lead., The reason for doing
this is that in the actual system it is the out-
put variable which can be measured and therefore
we should take advantage of this measurement., Tn



the process of this substitution the signal @ is
introduced into the feedback branch. Ry arraMg-
ing the three adders in juxtoposition as shomn in
Figure le, and recognizing that the order of add-
ing signals can be interchanged without affecting
the summation, it can be seen that the two load-
force correction signals cancel exactly, leaving
the final arrangement of the system as in Figure
1f.

This is the constructional arrangement. We
have derived the basic philosophy underlying the
use of feedback systems instead of communication
or filter channels. It can be seen that unity
negative feedback around an infinite gain ampli-
fier in series with a dynamic element having not
more than one more pole than the mmber of zeros,
will yield the equivalent of perfect flat re-
sponse with infinite bandwidth, The infinite
gain amplifier therefore generates the inverse of
the system unalterable dynamics. In addition the
infinite gain amplifier generates the negative of
the load disturbance. If we had within this loop
a nonlinear amplifier, the: the infinite gain
amplifier would not only coampensaté for the vari-
ation in gain due to the nonlinearity, but would
also campensate for all of the harmonic dis-
tortion generated by the nonlinear amplifier. The
things which it cannot compensate for are un-
wanted signals or noise signals at the input of
the infinite gain amplifier, The actual infinite-
gain amplifier is built with a gain of K and a
minor positive feedback of 1/K. This example
may have seemed a little too obvious, but it was
presented in order to {llustrate the individual
steps in the synthesis procedure. :

Minisum Phase Linear System with Many More
Poles than Zsros.

If one were to apply the technique in
Figure 1 to the unalterable component showm in
Figure 2a, which has a large number of poles but
no zeros, he would be unsuccessful in writing a
realizable desired mode of operation, because
there is no realizable way of generating the in-
verse of this unalterable component, It is im-
possible to get a large number of zeros without
poles in a realizable transference, Therefore it
is impossible to get the desired system shown in
Figure 1b 1f one has the given system shown in
Figure 2a., At this point one must ask one's self,
What is a possible of action? One possible mode
of action is to permit a small amount of error
due to a large mumber of poles located at very
high frequency, and attenuating the very high
frequencies, With respect to step responses this
would mean that one would permit & very rapid
rate of rise but not an infinite rate of rise on
the output, represented by the cascading of a
large number of very small time constants. With-
out specifying the power spectra of the signal

and the noise into this system, it is meaningless
to argue about the criteria for the best system or
the best response, Iet us take for our criteria
the fact that Figure 2b is a realizable, possible
mode of action, and that 1t i1s good enough, T is
a very small time-constant, and n 1is equal to
the muaber of factors in Gy

Figure 2c¢c shows this realizable mode of
operation, It is equivalent to Figure 2b cascaded
with the inverse of the unalterable camponent and
the unalterable components This system is now in
a form suitable for block diagram substitutions.
Again we will introduce an infinite gain amplifier
to generate the inverse of the function

(1 + 8T)®/6, ., This is shomn in Figure 2d.

Instead of expanding the feedback, two additional
feedback loops will be introduced. In Figure 2e

a major negative feedback loop has been introduced
fram the output to the input and in order not to
change the input-ocutput relationship an equivalent
minor positive feedback loop has been added to the
input, The outer feedback loop is the one which -
we wish to retain and the two inner feedback loops
we wish to combine. It can be seen that they will
combine in such a 'manner that the numerator poly-
nomial of the feedback channel is eqal to

(1 +sm)2L + The zeros represented by the
function Zg in Figure 2f are minimum phase, and
quite easily constructed. They lie on a circle
whose center is at s = ~1/T , and whose radius
is equal to 1 /T . There is one zero at the
or!~= and all the others are equa-angularly

spe. l. The entire function zj‘(;a is therefore
minimum phase and realizable, Th% complete system
is not perfect, and the error is exactly equal to
the output of the block 2/G, . One can consider
that this block is in parall®l with the unalter—
able dynamic element 1/(}:L and that this parallel
combination generates as mmany zeros as poles, and
therefore stabilizes the infinite gain loop.

Z/(}1 can be thought of as a high frequency by-pass
which takes the high frequencies which are
important to stability, but unimportant to the
output, and by-passes them around the unalterable
element, Again, the infinite gain amplifier may
be replaced by an amplifier with finite gain K,
and 1/K in positive minor loop feedback., Come
bining the two minor loops results in an equiva-

Z 1 .
lent of ( 51 . { ). This shifts the zeros

slightly fram their circular locus,.

Finite Gain Control

In cases where ine input signal to a system
is mixed with noise, it is not desirable for the
system to faithfully reproduce both the signal and



If the attenuation rate
of the signal is one decade-per—decade greater
than the attemuation rate of the noise, then a
single time-constant is the appropriate filter to
separate the two, and the turnover frequency of
this filter should equal the frequency at which
the signal power density spectrum equals the

the noise at the output,

noise power density spectrum. The design in this
case is illustrated in Figure 3. Figure 3a is
the given system with an unalterable component
containing a large time-constant, Figure 3b is
the desired filter in which a very small time-
constant T, 4s chosen to provide the necessary
filtering of the signal from the noise. The mode
of operation of the system as a whole is derived
fram Figure 3 by multiplying by the inverse of
the unalterable coamponent, and then by the un-
alterable component. This is the first step
toward finding the constructional arrangement. A
major negative feedback loop is introduced from
output to input, and its twin the corresponding
positive feedback loop is also shown in Figure id.
The inside lcop is shrunk so that it encompasces
only the control amplifier and its campensating
networke in Figure 3e. Resolving this feedback
system into ite eguivalent yields the final
system shown in Figure 3f. Here the gain is not
infinite at all frequencies, but has the constant-
component. of 'rl/'r which is a very large amount
equal to the ratio of the unalterable time-cone
stant to the desired time-constant., In addition
there is an infinite gain component at zero fre-
quency, produced by the integral action of 1/sT, .
This control function looks surprisingly familiar,
It is the type one has on a voltage regulator
using an amplidyne in a high speed proportional
loop and a motor driven field rhecstat for the
slow speed integral. A combination of the
methods shown in Figures 2 and 3 can be applied
to the most camplex minimum phase linear systems,
Now let us consider other types of systems,

Dead-Time Systems

The output~over-input transference of a con-
veyor belt is commonly known as dead time. This
type of transference is also present in process
controls with transportation lag, with flow delay
between input and cutput, in flow reactors, and
in fractionating towers, It is the $ransference
of a matched reflectionless distortionless trans—
migsion line. Feedback systems in which the
major component is a dead time are very difficult
to stabilize if the gain is sufficient to make
the system useful., If there is a single time
constant cascaded with the dead time, the maximum
Permissible loop gain is equal to the ratio of
the time constant to the dead time., TIf this
ratio is low then the loop gain is not sufficient
to override load disturbances, changes in the
system transference due to nonlinearities, and
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noise generated in the system. These stability
problems arise in process controls because the
system design attempts to achieve a mode of oper—
ation which is unrealizable. The feedback loop
from output to input is trying to make the output
follow the input perfectly. But this is an
impossible mode of operation, because if the input
should change suddenly, absolutely nothing will
happen at the cutput until after the elapse of a
time equal to the dead time of the system. If we
are to build the best dead-time control system,
then we must invent a new statement of the mode of
operation, This statement is: The output should
exactly equal the input delayed by the amount of
the dead time of the system. This is quite pos-
sible, If a conveyor belt loses none of its
material, then whatever is dumped on at time ¢
will came off at time ¢ + Td where Td is the
system dead-time,

Let us apply this philosophy to the process
control shown in Figure ka, The given system has'
a dynamic minimum~phsse member G s followed by
a dead time T, . An undesirable]‘.l.oad disturbance
is added to th* system and the sum of these two
components passes through the dead time T. to the
output., There is also a feedback function® F
which is given as unalterable. A realizable mode
of operation for this system is shown in Figure /b
A control system is built such that the input is
reproduced faithfully at @ , This then passes
through the dead-time Tl 'I'2 producing at °o

a faithful reproduction of the input delayed by
the time '1'l - Tz. In addition there is at the

output an extra signal produced by the load dis-
turbance °L « We must find out what is the best

realizable compensation forthis undesired signal,
In our actual system it is quite impossible for us
to know whether or not the undesirable signal @
exists until after the time T, when a measuremen

can be effected at the output., Tn addition if we
immediately try to correct for the presence of OL

this correction will not reach the output until
after an additional time Tl + T2 + Therefore the

best possible realizable correction for the applie
cation of a load disturbance would completely re-
move the load disturbance at the output of the
system only after the time T, 4 2T. had elapsed.,
Going back to our statement otlthe x@aliz.able nrode
of operation in Figure )b, we will inject the load
disturbance ©_ delayed by the dead-time T into
the feed-back “Loop so that 1t will get to Rork
and generate the negative of this signal at ©_ as
soon as possible to compensate for the actual £
load disturbance,

In Figure )b it is assumed that the feedback
loop with and F is''perfect' , In actual
practice we“shall design a loop 1t satisfactoryt ,
This would be a design like Figure 3, where g,



contains G, , and other camponents sufficient so
s0 that the closed loop transfer function has high
precision and speed of action. It is essentially
the closed loop design that one would have if the
dead times were removed fram the system., In
Figure )4c a major negative feedback loop fram out-
put to input has been introduced and its twin a
minor positive feedback loop has also been added
to keep the overall system transference equal to
that of Figure b. The two minor loops are then
combined to yield the final system shown in
Figure jd.

The minor feedback loop acts like a short
‘term predictor, When the input is changed the
minor feedback loop predicts immediately what the
output will eventually do and imtroduces this in
negative feedback, After the time T, 4 7. the
minor feedback loop suddenly turms of} andathe
major feedback loop suddenly comes on, so that the
system switches automatically from predictor con-
trol to feedback control after the time Ty + ‘1‘2
following each component.of a transient. ~This
system is linear, and the principle of super-
position holds. It operates like a linear switch
which switches from open loop control during the
time T+ T2 after each transient component to

closed loop control after this time,

The method shown in Figure ) is applicable
to any non-minimum-phase system. All right-side
8 plane zeros have the characteristies of dead
tine, They cannot be removed by feedback. They
can only be removed by feed-forward elements some—
what similar to the z/(}l component in Figure 2f,

But even this is evading the basic characteristic
of the non-minimum-phase elements, which is that
they act like dead times., To handle non-minimum-
phase systems, factor out the right-side zeros,
and group with them a set of left-side s plane
poles located at the mirror images of the zeros
in the Jo axis. This product will be an all
pass network with constant gain at all frequencies,
but with a lagging phase shift which increases
with frequency. Treat this combination 1n the
same manner as the dead times shown in Figure [,

statistical Predictor

The formulation of the synthesis problem on
a statistical basis is shown in Figure 5a. The
feedback system has an input which is the sum of
a desired signal 0a and an undesired noise com-
ponent °n (this may be the equivalent of load
disturbances and other undesired signals in the
system), The feedback system contains an unalter-
able output transducer with dynamic elements H
and a variable control amplifier with compensat-
ing network G. One wishes to find the design
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for G, with H unalterable, The design for G
should yield the minimum possible difference
between the actual system output 6, and the
desired signal €3, This difference is defined
88 Qg = 9 - 95, In Fig. 5a the error signal
is actually shown, This is not usually avail-
able, either in an actual system, or in a
laboratory set-up, since the undesired noise is
inextricably mixed with the sighal to form €;
and cannot be separated. The arrangement shown
in Fig. 5a is intended only to illustrate the
equation for Qg, and not the way in which it
wuld actually be found,

The criteria for minimiZing 6, is dependent
upon engineering judgment. We will not belabor
the !'best!! eriteria for the " best” system,
but will state a single example. If the signal
8g and the nolse §, are continuous randam func-
tions with Gaussian probability distributions,
(stationary random variables), then one may ef-
ficiently use the minimum error power as a
criteria for design. Setting up the equations
for average error power, and minimizing them,
will yield the following design:

S Ll T faa)
- %le) =t IF %}ﬂ—im )
s =i (2)
Q':lzl. . qi * ¢1—1 (3)

@, ()) is the cross power spectrum betwsen
input 3541 signal. 1(2) i8 the self power
spectrum of the imput. @* (s) has the left half
8 plane poles and zeros of the imput self power
spectrum. @, (o) had the lower half j plane
poles and zeH!s of the input power spectrum,

The complex frequency variable s is equal to Ja.
The transfer function G, is the optimum trans-
ference for the comple te feedback loop from 91
to 8 . The design of the camponent G within ~
the foop 15 given by:

.1 G L)
a n -(.m—’—c

The design for G is always realizable if H is a
minimum phase stable linear transference wiih
an equal number of poles and zeros. The design
for G is not always realizable fram the above
problem formulation when H does not fulfill
these conditions. In these cases, our mathe-
matics tells us (1) that one should not use a
feedback system such as shown in Fig. 5a, and
(2) that one should not minimize the error
between the output and the desired signal.,

What then should be the pattern for the
realizable system, and what signal can be



minimized for the best possible mode of action?
These are answered in Figure 5b, where H is that
part of the unalterable component which contains
the excess poles over the number of geros, and
which contains the dead time or non-minimum-phase
portions of the unalterable component, Since it
is impossible tc build a realizable negative dead
time or a realizable inverse of the product of a
large number of poles, the best that can be done
is to predict the best possible signal to present
to the input of this ' terrible™ unalterable
canponent. The mathematically perfect predicted
signal is shown as 6_ in Figure Sb, It is the
mathematical signal Bassing through the trans-
ference 1/H. The actually available signal
which must go through H is 6. . We would like
for the error between these Two to be a minimum.
This is a realizable form of control and this

is a legitimate mode of action to ask for,
Solving for the error power as defined in this
manner and minimizing it yields

% () et LF ) )
5% T m e gL

This is the design for the entire system preced-
ing H.

This is still but a statement of the mode of
control desired, It is not the actual construc-
tional form, One may solve for G inside the
feedback loop, from G=G _/(1-G ). Following this
step, the excess poles Bf H cBn be introduced ae
in Figure 3, and the non-minimum-phase mrt of H
can be introduced as in Figure }. The result is
a feedback system considerably mere complex than
that shown in Figure 5a, and having a mode of
action which it is impossible to describe by the
simplified criteria in Figure Sa,

Dead-beat Control

One may be presented with a completely de-
signed feedback system, which is very lightly
damped, and be asked to make the tranaient re—
sponses of the system dead-beat by the addition
of extra camponents, without eliminating any of
the existing system. This is possible. The
system may have a pair of dominant poles with
transference

1
[] 8§\
1427 = ( --)

®g

(6)

2
o =0 J1-F 63
Camplex zeros to exactly cancel these poles

can be provided by the tranaference (14P) in
cascade with the input, where P is given by

P-K +KE -sTr/2 re i (8)

1
K2'1+k-2k1/2cos°iglr

)
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1(1-1(2 [-Zkl/zcos m——;& ] (10)
K [ 262 (cos ‘%‘_T.r)-ll (11)
K°¢K1+K2 =0 (12)

ko, exp( ?‘%) (13)

T is the total step response time or total transe
1Ent tire, At the time T_ after an input step
change, all of the transidnt components will have
cancelled out. Another way to state it, is that
the input compensator breaks the input transient
into several individual transients at different
times, and each of these excites its own oscil-
latjon which can be represented by a vector,

The sum of these vectors is equal to zero at the
end of time T . The response of this system

does not apprBach the final value asymptotically .
but equals the final value exactly at the instmt
at which 811 of the derivatives at the output are
equal to zero, The control function P can be
either a single pulse or a double pulse generator
When the control function is a single pulse gen—
erator, one~half period response can be achieved.
When the control function is a double pulse gen-
erator, dead-beat response in any small fraction
of a cycle can be realized.

The application of this type of control to
an existing system is shown in Figure 6, Figure
6a is the given unalterable unsatisfactory feed-
back system. It is characterized by Equation 6,
having a dominant pair of complex poles. The
oscillations in this system can be made negligi-
ble by introducing the function P in feed—
forward from the input. The system will respond
in a dead-beat manner to every input transient,
If a similar pulse generator could be provided
as feed-forward from the load disturbance as
showmn in Figure 6d then all load disturbances
would be characterized by dead-beat motion of
the output from an initial to a final value,
This mode of operation is realizable.

To simplify the steps required we will com-
bine the input and the load disturbances as an
equivalent input signal as shown in Figure 6¢.
This also shows a single pulse generator P de-
signed in accordance with Equation 8, The
pulse generator P is shown as having an input
equal to the system input plus a function of the
system load. But the system load disturbance
cannot be measured directly, It can only be
derived from measurements at the feedback posi=-
tion or at the error position withif the existe
ing system, For this reason, the equivalent
signal input to P is derived from system measure-
ments as shown in Figure 6d, The branch point
ahead of Gy G% is moved through these dynamic
elements and Yhrough the feedback block until
it comes from the actual feedback as shown in
Figure be. The feedback loop around P is



isolated as a mingle local feedback loop amd then
the two adders are interchanged in position to
form the resultant constructional arrangement in
Figure 6f, The block (1+1/Fq G ) can be approxi-
mated by a phase lead network with a gain between
me—galt and five and phase shift of less than
4180”7 1n the frequency bandof interest. The block
P has no d-c gain., Tt is a pulse generator, and
with the feedback branch around it, becomes & con-
timuous pulse generator with s-plane poles. Tt
can be built either as a single-reflection trans-
mission line with feedback, or as a continucusly
reflecting transmission line which is not termin-
ated in the characteristic impedance at either
end,

Summa ry

Direct synthesis depends upon a conception
of a mode of operation which is realizable, and
includes the unalterable system components., The
final system must have an excess of poles over
the nuaber of zeros equal to the excess of the
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mode of operation is a block diagram. The values
within the block diagram are derived fram the
criteria (based on engineering judgment) for

" best realizable’’ .

Additional bloeck diagram parts are introdue-
@d by a series of substitutions, with steps for
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