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SERIES EDITOR’S PREFACE

X-ray topography is the latest in a long line of tools for the study of
crystals which use X-ray diffraction. This is the first book devoted
entirely to developing the theme of the principles and application of this
technique and will fill a very real gap in the literature. It is assured of
a ready welcome. I am particularly glad to welcome it into this series as
it compliments existing and forthcoming volumes, particularly Crystal Growth,
Oxide Semiconductors, and Defects and Surfaces in Semiconducting Materials
and Devices.

Many laboratories interested in the study of solid state devices and the
materials which go into them now have X-ray topographic facilities. The
technique has proved useful in the study of dislocations and faults in metal
crystals, semiconducting materials and bubble memory garnets as well as a
wide range of other materials from natural diamonds to silicon integrated
circuits. The quality of heterojunction lasers was improved when the
behaviour of dislocations in the (Ga,Al)As layers was illuminated by X-ray
topographic studies. It is a very powerful new tool for solid state
scientists and crystal growers and is already well established for the assess-
ment of crystal quality in a wide range of single crystal materials.

Dr. Brian Tanner is an acknowledged leader in the field although still
quite a young man. He studied at Oxford before going to Durham to set up
a laboratory for X-ray topography in the Department of Physics. He has
given invited papers at several International Conferences and published over
twenty research papers.

Brian Pamplin

January, 1976.

Scientific Advisers and Co.,
15 Park Lane,

Bath.



PREFACE

Although by no means a new technique, the use of X-ray topography is at
present increasing rapidly, particularly as an aid to crystal growth studies
and quality control of monolithic crystal devices. The technique is comple-
mentary to its cousin, transmission electron microscopy in that X-ray topo-
graphy enables a thick, nearly perfect single crystal to be examined with a
relatively poor resolution over a large area whereas electron microscopy
necessarily uses thin specimens of quite high dislocation density and
examines a very small area with excellent resolution.

Improvements in crystal growth techniques in the last five years have
provided many new materials suitable for X-ray topographic study and in turn,
X-ray topography has provided the crystal grower with valuable data on the
quality of his products. The feed-back between topographer and crystal
grower or device manufacturer has proved so successful that today X-ray topo-
graphic analysis is performed as a standard routine by many crystal growing
groups and firms manufacturing integrated circuits. The production of highly
perfect single crystals has permitted the observation of many new X-ray opti-
cal phenomena and the detailed experimental verification of the various
theories of dynamical X-ray diffraction. Correspondingly, the newly dis-
covered effects have been utilized to the benefit of the crystal grower and
device manufacturer in the development of new techniques with greater sensi-
tivity to lattice parameter changes. As much of modern electronic engineer-
ing relies heavily on highly perfect single crystals, X-ray topography has
claim to an important place in the hierarchy of assessment techniques.

Yet, despite the complex interaction between X-ray topographer and crystal
grower, there seems to exist a certain lack of awareness of the recent
developments, the potential and the problems of X-ray topography amongst non-
specialists. There is a feeling that X-ray topography is a black art, under-
stood only by a few initiates. While several excellent review articles have
appeared, their existence is not widely known and in the sixteen years since
X-ray topography was developed in its modern high resolution form, no book
has been published on the subject.

From discussions with my colleagues, I am convinced that there exists a
need for an elementary treatment of X-ray topography, comprehensible to the
non~-specialist who may have much to gain from occasional use of the tech-
niques and it is this gap that the present volume is intended to fill. The
book falls roughly into three sections. It is not comprehensive and my
apologies are extended to any of my colleagues who may feel that their work
has been unjustly neglected. In the first section the basic theory necessary
for the understanding of topographic contrast is presented together with the
chief experimental techniques and an analysis of the types of contrast
observed. The second section presents some applications of topography.
Those considered are included as being typical or classic studies and illus-—
trate the kind of information obtained from topography. The final section
reviews the work on assessment of crystal perfection in direct relation to
the growth process. This is an area where future development will be rapid
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and it is hoped that the growth points are anticipated. Following each
chapter, a selected bibliography of additional papers is included as an

appendix. These are grouped according to the main subject headings treated
in the text.

My thanks are extended to those of my colleagues throughout the world who
have provided the photographs without which the text would be lifeless.
In particular I would like to thank Dr. A.D. Milne for his thorough and
constructively critical reading of the manuscript and Mrs. S5.M. Naylor for
typing the final copy of the text. I acknowledge with gratitude the support
of my wife and family, to whom the book is dedicated.
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CHAPTER 1

BASIC DYNAMICAL X-RAY
DIFFRACTION THEORY

It is important from the outset to emphasize that X-ray topography is not
concerned primarily with the study of surfaces. The full title,

X-ray Diffraction Topography, is much clearer as it indicates that the
topography we are studying is that of the diffracting planes in the crystal,
not the topography of the exterior features. Of course, the contours of the
crystal surfaces are important in determining the contrast on X-ray topo-
graphs, but this is of somewhat secondary importance to the contours of the
crystal lattice planes. When we use the technique to observe dislocationms,
we are studying the topography of the lattice planes around the defect.

We do this by recording the intensity of the X-rays diffracted from the
deformed planes which differs from the intensity diffracted by the perfect
crystal forming a localized image of the defect. Essentially, we are using
the phenomenon of diffraction to probe the internal structure of the crystal.
It is not, however, a point probe, and the interpretation of the observed
contrast is far from trivial.

At the simplest level, we can obtain some insight into how dislocations
are imaged in the following way. Consider a perfect crystal set to diffract
monochromatic X-radiation of wavelength X from a set of lattice planes
spaced d. For a strong diffracted beam to emerge at angle 26, to the inci-
dent beam the well known Bragg relation applies. That is,

A = 24 sin eB (1.1)

It is clear that when the lattice spacing or lattice plane orientation
varies locally, e.g. around a dislocation, the relation will not apply
simultaneously to the perfect and distorted regions. Consequently there is
a difference in intensity corresponding to the two regions, i.e. an image of
the defect.

In order to interpret these changes in intensity, and more importantly,
relate them to the lattice plane topography in a particular crystal under
investigation, we need to know something about the theory of X-ray diffrac-
tion in solids. Now although an elementary treatment of X-ray diffraction
may be found in many textbooks on solid state physics, the treatment is based
on the KINEMATICAL approximation. In this situation, it is assumed that the
amplitudes of the scattered waves are at all times small compared with the
incident wave amplitude. For small crystals, of dimensions less than about
a micrometre in diameter, and in heavily deformed crystals where the dis-
locations act to divide the crystal into a mosaic structure of independently
diffracting cells, the kinematical theory may be employed satisfactorily to
obtain information on the crystal structure. However, for large single
crystals which are also highly perfect, the amplitude of a diffracted wave
becomes comparable with that of the incident beam. Interchange of energy

1




2 X-Ray Diffraction Topography

occurs between the beams as they pass through the crystal and a kinematical
theory containing an extinction correction cannot be applied. It is
necessary to develop a DYNAMICAL theory of diffraction to account for the
processes occurring.

The problem can be treated in a variety of ways, and the theory of
Darwin, in which the scattered amplitude due to an elementary layer of
material is used to obtain a set of differential equations, was originally
applied to the two-beam theory of electron diffraction (see Whelan, 1970).
However, a more satisfactory approach is that of von Laue (1952) and this is
followed here. The dynamical theory in the X-ray case has been excellently
reviewed by Batterman and Cole (1964) and Authier (1970) and the reader is
strongly recommended to read these articles. More general treatments are
to be found in the books by James (1948), Zacharaisen (1945) and von Laue
(1960). The article by Hart (1971) on Bragg reflection X-ray optics,
referred to again in Chapter 2, also contains a concise summary of the
elements of the theory.

1.1. FUNDAMENTAL EQUATIONS OF THE DYNAMICAL THEORY IN A PERFECT CRYSTAL

The problem can be stated with deceptive simplicity. We require a
solution of Maxwell's equations in a periodic medium matched to solutions
which are plane waves outside the crystal.

The solutions obtained must reflect the periodicity of the crystal
lattice, and such functions are known as Bloch functions. The Bloch waves
can be constructed from a superposition of plane waves, but it has been
verified experimentally that the Bloch waves do have physical significance
and are not merely convenient mathematical constructions.

According to the kinematical theory of X-ray diffraction, each diffracted
wave is associated with a vector in reciprocal space corresponding to a
reciprocal lattice point g and also has a wavevector inside the crystal Eg'

The diffracted beam wavevector is related to the wavevector of the incident
wave in the crystal by the Laue equation,

Eg = Eo + g. (1.2)

In the dynamical case, which must yield the same results as the kinematical
theory in the limit of thin crystals, we may expect solutions to consist of
linear combinations of such waves. Accordingly, we look for solutions of
Maxwell's equations for the electric displacement D of the form

D=25%D exp(-2miK .r)exp(iwt). (1.3)
b=%D p( _g_) P )

Assuming that the electrical conductivity is zero and the magnetic
permeability is unity, Maxwell's equations reduce to

curl curl D = - {(1 + y)/c>3(3%p/at%) . (1.4)

In a periodic medium, the susceptibility x is periodic and can be expanded
as a Fourier series over the reciprocal lattice as

X =g Xh exp(-2mih.1). (1.5)
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Xh is related to the structure factor Fh by a proportionality constant
2
Xy, = reA Fh/vvc, (1.6)

where T, is the classical electron radius and V is the volume of the unit
c

cell. The structure factor is, of course, related to the atomic scattering
factors by

F o= L fi exp(Zﬁlﬁ.zi), (1.7

where r, is the position vector in real space of the i th atom with respect
to the origin.

As x is very small in the X-ray region, typically of the order of 10—5,

we can therefore write (1.4) as

curl curl (1 - x)D = —(1/c2)322/9t2 (1.8)
and substitution of (1.3) and (1.5) into (1.8) leads, after some
manipulation, to

2
T (K .D, )X -~ (K .K)D, } = {k" = (K_.K }D 1.9
HXgn By DKy~ XKy KDy (KgrKg) IDg» (1-9)

where k = w/c is the vacuum wavevector.

These equations are the fundamental equations of the dynamical theory and
are a vector form of the equivalent equations which may be obtained in the
electron case by solving Schrodinger's equation in a periodic medium.

Unlike the electron case, it is fortunate in X-ray diffraction that only
very rarely does more than one reciprocal lattice point provide a diffracted
wave of appreciable amplitude. This arises from the much larger radius of
curvature of the Ewald sphere in the electron case compared with X-ray
diffraction. Thus, we need only consider two waves to have appreciable
amplitude in the crystal - that associated with the incident wave and that
associated with the diffracted wave from a reciprocal lattice vector g.
Equations (1.9) then reduce to

D, ™ DD, 0 DK, < D,

= (k2 - 5g-5g)_Dg (1.10a)
Xg (K DK, = xg (K KD+ X, (K DK, = Xo (By KD,

= @l - K_.K)D . (1.10b)

Taking the scalar product of (1.10a) with Bg and (1.10b) with 90 and

remembering that waves of electric displacement are always transverse
(i.e. X..D = K .D = 0), we obtain
~o'>o  —g'=g
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2 2
D - . =
kcxgg+{k (1+XO) 5050}1)0 0,

o+ x) o+ K e
K(L + - K .KJD +k%xD =0,
I Xg'o
where C=D.D =1 for o polarization
—o'—g
= cos 26B for m polarization.
For a non-trivial solution
2 2
Koxg K5+ x ) - KK
2 2 = 0. (1.12)
k™(1 + - K .K k™C
( Xg) KK Xg
Writing
2
aO - ék{EO'-l-('O k(1 + XO)}’
2 (1.13)
a = 3k{K .K = k"(1 + }
_— {_g K, @+ x)%s
We arrive at
2.2
= lk"C —~ 1.14
aoag 3 Xng. ( )

1.2. THE DISPERSION SURFACE

We are now in a position to introduce one of the most important and
useful concepts relating to dynamical diffraction theory - the dispersion
surface. Equation (1.14) is the fundamental relation linking 50 and Eg in

the crystal, and we can represent it geometrically in the following way.

About the origin O and the reciprocal lattice point G (where OE = g) draw
spheres of radius k. A section through these spheres is shown in Fig. 1.1.
Only close to the intersection, the Laue point, will strong diffraction
occur as only there is the Laue equation (1.2) satisfied. Now it is easy to
see from (l.11) that if no diffracted wave exists (i.e. Qg = 0), then

IKOI = k(1 + x,/2). (1.15)

That implies that the wavevector of the wave in the crystal is given by the
wavevector in vacuo multiplied by the refractive index. As Xg is small,

IEOI = k. A second pair of spheres are drawn about O and G with radius
k(1 + XO/Z). Far from the Laue point, the tail of the wavevector in the
crystal Eo will fall on the sphere about 0. However, when strong
diffraction occurs (1.14) defines the relation between Ko and Eg and thus

the tail cannot lie on the spheres. Figure 1.2 shows the region close to
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Fig. 1.1. Spheres in reciprocal space about the lattice points
0 and G showing the position of the Laue point L.

the Laue point at a very much greater magnification.
The arcs AB and A“B” correspond to the spheres of radius k and the arcs
CD and C°D” to those of radius k(1 + XO/Z). The tails of the wavevectors 50

and Eg lie on the solid curves. We note that o, and o correspond to the

perpendicular distances from the point P to the spheres CD and C”'D”. As the
region is very small compared to the radius of the spheres, the spheres may
be approximated as planes. Then the equation of the dispersion surface
(1.4) becomes a hyperboloid of revolution with axis OG. Our section of the
dispersion surface is thus a hyperbola asymptotic to CD and C’D”. There are
four branches - two for each polarization state, the upper ones being
denoted branch 1 and the lower ones branch 2. For small Bragg angles the
dispersion surfaces of the o and m polarizations are very close together,
but at higher Bragg angles the effects of polarization become extremely
important.

Any wave propagating in the crystal must have wavevectors Ko and Eg lying

on the dispersion surface, and returning to (1.3) we see that the wave has
amplitude

D= exp(lwt){]_)o exp(—2n1§b. r) + Eg exp(-2n1§g.£)}, (1.16)

where the amplitudes D and D are determined from (1.11) and (1.14).
The amplitude ratio 2

R=D/D =2 Cky_ = Ck 200 . 1.17
g/ o ao/ Xz xg/ oy ( )

Thus not only can we determine the wavevector from the position of the tie
points P on the dispersion surface but also the amplitude. The importance
of the construction becomes apparent.




