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Preface

What is clear and easy to grasp attracts us; complications deter.
David Hilbert

Everything should be made as simple as possible, but not simpler.
Albert Einstein

Science will not light the lamp in a person whose soul has no fuel.
’ Michel de Montaigne

In the course of the last 15 years I have had the opportunity to lecture
on a variety of topics in nonlinear functional analysis and its applications. In
each case, I was able to recommend to my students a series of outstanding
monographs on the particular problems under consideration. What was
missing was a comprehensive treatment of nonlinear functional analysis,
accessible to a broader audience of mathematicians, natural scientists, and
engineers, with a command of the basics of linear functional analysis only,
which would provide a rapid survey of the subject. I attempted to close
this gap with a five-part expansion of my lecture notes. The first three
parts appeared as Teubner texts (Teubner-Verlag, Leipzig, 1976, 1977, 1978).
The present English edition was translated from a completely newly written
manuscript which represents a significant enlargement and revision of the
original version. The material is organized as follows:

Part I: Fixed-Point Theorems;
Part II: Monotone Operators;
Part III: Variational Methods and Optimization;
Parts IV/V: Applications in Mathematical Physics.

A Table of Contents of Parts II--V can be found on p. 871.

vii



‘ wiii : . . ‘ i Lol ’ Preface
;. . ‘
All of the necessary basic tools from linear functional aialysis are contained

in'the appendix to this volume, where they are summarized along with typical
examples. Thus the basic content of all five volumes can be understood

even by those readers who_have little or no knowledge of linear functional
analysis. Such 4 reader will find detalled instruetions i in the mtroductlon to;

the Appendix to this volume. '
The emphasis of the treatment is based of the foliowmg consnderatxons

Whlch até the basic, guldmg concepts and what relatlonshlp exists between
them? i

What is the rélationship between these ideas and the known results of .

classical analyms and of linear functiongl pna]ysxs‘? ' W
What ate somé typlcal applications?* B

Through - all of this,. the réader i is inténdéd to feel that the thedry is bemg
developed not 51mply for its own sake, but with an eye toward finding
effective solutions of concrete problems.

. We will attempt to illuminate the subject from many sides—from the
set-theotétio foundations (;he'Bourbaki—Kneser Fixed-Point Theorem) all
the way to cohcrete numerical methods, and their numerous applications in
‘physics, chemistry, biology, arid économics. The reader should then begin to
see the mathematics involved as a unified whole. At the same time, we want
to show How deep mathematical methods can be applied in the natural
sciences, in technology, and in economics. The development of nonlinear
functional analysis has been substantially influenced by complex problems
posed by the natural sciences, and in its continued development, a close
contact with-the matural sciences will be of great significance. In the presenta-
tion we have chosen here, the emphasis is on the use of analytical methods,
although we will also attempt to show the relationships with algebraic and

~differential topology. Furthermore, the presentation has been influenced
strongly by the spirit of modern global analysis.

. We make no attempt to deal in the broadest generalities, but rather we
will try to expose the essential core simply, without trivializing it. In the
experience of the author, it is substantially easier for the student to take

a mathematical concept and extend it to a more general situation, than
to struggle through a theorem formulated in its broadest generality and
burdened with numerous technicalities in-an attempt to divine the basic
concept.- Here it is the teacher’s duty-to be helpful. To assist the reader in
recognizing the central results, these proposmons are denoted as theorems. In

* an appeéndix to the Table of Contents, thereis ah ihdex of thes theorems and
of the basic definitions; begmmng onp. 859. In estabhshmg such a list, there
i$, needless to shy, ati element of discretion.

Every chaptet- s ‘self-contained. Each beginis w1th mcmvathns heuristic
approaches, and - indications of the typical problems to be solved. Each
contains the correspondingly most important propositions and definitions,
together with clarifying examples, illustratioris, and typical applications. In
the interests of the reader, we have no qualms about including quite simple

‘
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examples. We also try to get to the heart of the matter as rapidly as possible.
Finally, we think it important that the reader know, at each stage of the
book, how the general theory applies to specific concrete applications. All of
this required a very careful selection of material, since one could easily
write a specialized monograph for each chapter. Indeed, such monographs
already exist in part. At the end of each chapter, there are problems and a
bibliography. The problems vary substantially in difficulty:

Problems without a star are for practice in using the material presented,
and require no additional methods.

Problems with one star are more difficult. The solution reqmres additional
ideas.

Problems with two stars are very diffi cult and their solutxon requn'es
extensive additional knowledge.

Each problem contains either the solution or an exact reference to the mono-
graph or original paper in which the solution may be found. Additionally,
we provide commentary designed to clarify the significance of the¢ results.
Problems with one or two stars could also be regarded as references almed at
important extensions of the results.

The references at the end of each chapter are of the followmg form
Krasnoselskii (1956, M, B, H); etc. The.name and the year relate to the bibliog-
raphy at the end of the book. The letters stand for the following:

M monograph,;

lecture notes;

survey article;

proceedings; '

extensive bibliography in the work cited;

comments on the historical development of the subject contained i in the
work cited.

WY YrE

Finally, we describe the common thread of the works cited. Given the
expanse of the existing literature, it was necessary to make a careful selection,
and these choices are those which, in the necessarily subjective opinion of the
author, provide the reader with the easiest access to a comprehensive picture
of continuing results. There is a natural emphasis, therefore, on survey articlés
and monographs. However, we also cite a number of classical works which
were of special significance for the development of nonlinear functional
analysis. We recommend that the reader look at at least a few of these works,
so as to get a lively impression of the creative process and the historic
development of the mathematics that lead to these new results. In order to
keep the bibliography within reasonable bounds, many important wotks
had to be omitted. Some chapters contain various general references for, for
example, the theory of integral equations, of ordinary and partial differential
equations, of numerical methods, of algebraic or differential topology, etc.
On p. 865 there is a listing of these general references.

In order to keep the book as self-contained as possible, we have included
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a number of results from linear functional analysis in the appendices to Parts
I-III.

We recommend that the reader begin directly with the text of a chapter, and
only refer to the appendix upon discovering a gap in knowlege. A reference
of the form A, (20) is to (20) in the appendix, Part i, wherei = 1,...,5, while
(16.20) refers to formula (20) in Chapter 16. Omission of a chapter number
means that the formula is in the current chapter. In each chapter, the main
results (i.e., the theorems) are distinguished by upper-case roman letters; for
instance, “Theorem 12.B in 12.7” means the second theorem in Chapter 12,
located in Section 7 of that chapter. However, propositions, definitions,
examples, etc., are numbered consecutively in each chapter; for example,
in Chapter 14 one finds Example 14.1, Proposition 14.2, Example 14.3,
Definition 14.4, etc., in that order. A reference to Proposition 2.6(]) is to step
(I) in the proof of Proposition 2.6. We subdivide the chapters among the five
parts of this work in the following way.

Part I: Chapters 1-17;
Part II: Chapters 18-36;
Part III: Chapters 37-57;
Part IV: Chapters 58-79;
Part V: Chapters 80-100.

An index of symbols used may be found on p. 851. We have tried to use
generally accepted symbols. A few peculiarities, introduced to avoid confu-
sion, are described in the remarks introducing the symbol index. As for
abbreviations, we basically use B-space and H-space for Banach and Hilbert
spaces, respectively, and M-S sequence for Moore—-Smith sequence.

We developed our presentation with due consideration to the fact that a
book is rarely read straight through from beginning to end. We hope that
even a cursory skimming of the text will suffice to impart the basic content.
For such an approach,-we recommend reading the chapter introductions,
the definitions, the theorems and propositions (but not the proofs), the
examples (but not the proofs), as well as the numerous remarks interspersed
throughout the text, which deal with the significance of the individual results.
The reader who does not have time to solve the exercises should nevertheless
skim the headings for the problems, as well as the remarks, which describe
the significance of the problem and its relationship to the material. The
reader who is interested in supplementary problem material can try to prove
independently all of the numerous examples in the text, without first peeking
at the proofs provided. All hypotheses of a proposition are explicitly stated,
so that there is no need for a time-consuming search of the antecedent
text to find them. We have attempted to reduce the number of definitions
to a minimum, so as not to overburden the reader with too many concepts.
In order to clarify connections, related results are at times gathered into
a single proposition. This approach was chosen in part for the benefit of
natural sciéntists and engineers, whose primary interest is to find out what
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help mathematics can provide for various nonlinear problems. For a very
quick reading, it sufficies to look at the theorems and the corresponding
definitions. ’

The proofs are highly structured, to help the reader who is irterested in
proofs in recognizing the individual steps and ideas involved. As is well
known, a careful study of proofs is the only road to a deeper understanding
of mathematical theory.

The contents of the individual chapters can be gleaned from the extensive
Table of Contents on p. 871. A brief summary of the general goals follows.

Part I consists of three sections:

fundamental fixed-point principles;
applications of the fundamental fixed-point principles;
mapping degree and fixed-point index.

We begin with the three fundamental fixed-point results: the fixed theorems
of Banach, Schauder, and Bourbaki—Kneser. From these we derive a number
of important results without using the mapping degree. This approach was
chosen for didactic reasons. The reader who wishes to learn about the mapping
degree immediately may begin reading in Chapter 12. The applications in
Part I are concentrated primarily on differential and integral equations in
Banach spaces of sufficiently smooth functions, without using Lebesgue
integrals or Sobolev spaces; applications concerning the latter are included in
Parts II-V. We place special emphasis on stability questions. The applications
in the sciences are in nonlinear oscillation, heat conduction, ecological
and economic models, game theory, chemical reactions, minimal surfaces,
boundary layer equations, representation theory of Lie groups and the
classification of elementary particles and molecular vibrations, problems
in celestial mechanics, interval mathematics, formal computer languages,
foundations of set theory, etc. A number of deeper applications could only
be indicated in the problem sections, due to a lack of space. Further applica-
tions belonging to this problem area can be found in Parts IV and V.
Part II, which deals with monotone operators, consists of sections on

an introduction to the subject;
- an examination of linear problems;
a generalization to nonlinear stationary problems;
a generalization to nonlinear nonstationary problems; and
a general theory of discretization methods.

The theory of monotone operators, as developed in the last 20 years, repre-
sents a natural generalization from Hilbert space methods for linear differ-
ential and integral equations to nonlinear problems, and is therefore of prime
significance for the solution of numerous applied nonlinear problems. Our
main goal in Part ITis to clarify the connection between classical linear Hilbert
space methods and the theory of monotone operators. The significance of
these methods arises from a background formed by the physical concept
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of energy. In Part II we consider applications to differential and integral
equations, using Sobolev and Lebesgue spaces. Familiarity with these spaces
i§ not a prerequisite, since the necessary material is contained in the text.

" Part 111, on variational methods and optimization, consists of the follow-
ing sections:

an introduction to the subject; .
extremal problems without side conditions;
extremal problems with smooth side conditions;
extremal problems with gencral side conditions;

yanatlonal inequalities.

Here it is our goal to develop the common ground between classical varia-
tiong! methods and modern optimization methods, with the aid of non-
lingay functional analysis. There are numerous applications to differential and
integral equations, differential inequalities, optimization problems, control
problems, variational problems, approximation theory, information theory,
stat1§tncal physics, game theory, etc.

Parts IV and V are dedicated to the deeper applications of nonlinear
functional analysis to mathematical physics. Here we place particular em-
phasis on the derivation of the basic equations-of, for example, mechanics,
‘ndnlinear elasticity and plasticity theory, hydro- and gas dynamics, thermo-
dynamics, statistical physics, kinetics of chemical reactions, general relativity,
electrodynamics, quantum theory, etc. We hope to provide the reader with
an understanding, not only of the mathematical problems, but also of the
physical interpretation of the mathematical results. At the end of Part V there
is a.brief outline of the history of nonlinear functional analysis, which is
intended to clarify the historical lines of development.

Besides the natural science applications, we steadily emphas1ze methods for
cqnstructmg approximate solutions, along with convergence proofs. In this
context, our main concern is to develop the central principles of approxima-
tion methods within the framework of numerical functional analysis, such as
the stability of fixed points and iterative methods, or the connection between
convergence, consistency, stability, and existence in projection methods. We
will also emphasize the use of tools from differential topology in modern
nufnerical mathematics. As every numerical analyst well knows, the diffi-
culties are in the particulars, so that, in principle, each problem requires
its own specific numerical approach. The interested reader can pursue this in
F. S. Acton’s book, Numerical Mathematics that Work (1970), or in G. E.
Forsythe’s survey acticle, Pitfalls in computation, or why a math book isn’t
enough (1970). Nevertheless, an understanding of the general principles is
helpfiil in organizing and relating the numerous existing concrete numencal
methods within a general framework.

_ For the convenience of the reader, I have tried to keep Parts I-V, as well
as the individual chapters, as independent of each other as possible.

The study of a mathematical text always demands hard work. It is my hope
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that the reader, after doing that work, will be delighted by the discovery of '
new insight into a modern, multifaceted mathematical discipline and its
applications. I have tried not just to organize the propositions and defini-
tions, but to impart to the reader much of the general experience accumulated
over many years by the many mathematicians who have devoted themselves
to nonlinear functional analysis. In doing this, I have also tried to distill clearly
the general principles and strategies involved. The field is in a stormy state of
development. This treatise contains the products of a long distillation—those
which serve as a foundation for the entire theory. I hope that the reader, after
perusing these lectures, will be in a position to pursue further developments
independently to assign new results to their place in the existing theory, and
to recognize genuinely new concepts as such. ‘

Any critiques, suggestions, or remarks will be gratefully received.
. T'am deeply obligated to numerous colleagues, here and abroad, for inter-
esting conversations and letters, as well as the papers and books they sent me.
My special thanks is due my teacher, Prof. Herbert Beckert, for all which 1
was able to learn from him. In Leipzig, he trained a generation of mathe-
maticians to concentrate on the essential mathematical substance and to avoid
the pitfalls of overspecialization. I hope that~some of that spirit appears
in these volumes. Extensive thanks is also due Paul H. Rabinowitz and
the Department of Mathematics at the University of Wisconsin—Madison
(U.S.A.) for the invitation to a 4-month-long stay in the fall semester of 1978.
This visit had substantial influence on the final form of this book. In the
technical preparation of the manuscript I had the assistance of numerous
colleagues. For typing parts of the manuscript, my grateful thanks to Ursula
Abraham, Amira Costa, Elvira Krakowitzki-Herfurth, Heidi Kiihn, Hiltraud
Lehmann, Karin Quasthoff, Karla Rietz, Stefan Ackerman, Werner Berndt,
Peter Fuhrmann, Thomas Hesse, Thomas Herfurth, Jiirgen Kollner, Jiirgen
Schmidt, Rainer Schumann. For making photocopies, my grateful thanks to
Sonja Bruchholz, and for calculating numerical examples on the computer,
my grateful thanks to Inge Girlich, Johannes Maul, and Herbert Ristock. The
understanding and experienced support of our department’s librarian, Frau .
Ina Letzel, was very valuable to me. Furthermore, I would like to thank the
administrators of our Department of Mathematics and its Director, Prof.
Horst Schumann, for supporting the project.

I also want to thank the translator, Peter Wadsack, for his excellent work.
I am very indebted to him for very valuable remarks and suggestions, and for
his indulgent incorporation of the very extensive changes I made to the
" original manuscript, during and after the original translation. In conclusion,
I want to thank Springer-Verlag for a harmonious collaboration and an .
indulgent understanding of all my wishes.

Eberhard Zeidler
Leipzig
" Spring 1984
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