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Preface

This problem book is intended for students of universities
and technical colleges as a study aid in the elementary
course of the theory of probability. Most of the problems are
suitable for mathematics students at technical colleges, but
problems 1.19-1.22, 2.18-2.20, 3.114-3.132, 3.147-3.160,
4.9-4.22, 4.41-4.55, 4.89-4.94, 4.101-4.115, 4.135-4.140 are
meant primarily for university students.

Command of the basic concepts and methods of the theory
of probability is necessary not only for mathematicians but
also for applied scientists. The solution of practical prob-
lems depends on the choice of a correct stochastic model,
which both reflects the essential features of the event under
investigation and is easy enough to investigate. One cannot
select a model and estimate its accessibility without suf-
ficient knowledge of the probability theory and its methods.

Comparatively few problems in the book are formulated in
applied terms since it is primarily intended for general
courses in probability theory rather than for various spec-
ialized courses at technical colleges. The authors’ wish
was also to give as much information on the methods of the
probability theory as possible in so small a book. Solutions
of applied problems are presented in two stages: (1) mathe-
matical formulation of an applied problem and (2) solution
of the subsequent mathematical problem. The authors
believe that their principal aim is to acquaint students with
standard models of the theory of probability and to teach
them to cope with the difficulties of the stage of problem
solving; the problems were chosen precisely with this idea
in mind; problems that differ from ordinary mathematical
problems only in “applied” terminology are no substitute
for instruction in the techniques of constructing mathemati-



cal models of real phenomena. Obviously, models of real
phenomena that are actually employed in the fields of science
and technology relevant to each technical college will be
the most useful.

Only a few of the problems included here involve simple
“number crunching”. Instead of choosing problems in which
students merely substitute numbers in formulas, the authors
have tried to choose problems that will acquaint the students
with the main concepts and methods of the probability
theory as well as illustrate the relationship between the
concepts and enable the students to estimate the possibili-
ties of the methods.

In this connection, a number of problems are theoretical,
requiring proof of an assertion or investigation of a partic-
ular problem. Problems of this kind are usually included as
part of a series; their solution in succession should not
present difficulties. It is much easier to solve the problems
with the aid of the instructions provided in Part 2. The
problems marked with asterisks are supplied with selutions.

Theoretical problems often contain material that is sig-
nificant in principle but is almost ignored in standard
courses in the theory of probability. This is especially true
of such techniques of problem solving as the representation
of the required random variable as a sum of indicators, the
use of the linearity of mathematical expectation, the intro-
duction of generating the characteristic functions, the meth-
od of moments, a consideration of random variables which
are similar to the given quantities but easier to investigate,
and so on.

The authors



PART 1

Problems

CHAPTER 1

The Simplest Probability Schemes

Mathematical models of random events considered in the
theory of probability are based on the concept of a sample
space or probability space, i.e. a triple (2, 4, P), where
Q = {o} is a nonempty set, whose elements o are interpret-
ed as mutually exclusive outcomes of the random event in
question; £ is a collection of subsets of the set Q called
events (the set £ is assumed to contain €2 and to be closed
with respect to an opposite event or a sum of events in not
more than a countable number, i.e. 4 is a o-algebra); the
probabibity P is a function defined on the events A € A
and satisfying the following conditions:

1. P(A)=0 for any A4 € 4;

2.PQ) =1; (1.1)

3. P(QA,,)=ZIP(A,,) if A;,4;=¢ for any isj.

The sign ¢ denotes here an empty set (or an impossible

event).

The definition of operations on events and that of the
algebra and o-algebra of events can be found in courses in
probability theory (see, for instance, [6], [2], [3]). In this
chapter we consider two of the simplest classes of sample

spaces.
Suppose Q = {w;, ®,, ..., o;}. The c-algebra of events
A includes all 2° subsets A = {oo,-l v @ } of the:

set 2. In the classical definition of probability, it is assumed
that all P (0;) = 1/s and, therefore, the probability

P (4) of the event A = {w;, . . ., 0;, } is equal to the ratio
of the number of the simple events* ®; in 4 to the whole

* Here and in what follows the number of elements of any finite:
set M will be designated as |M]|.
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number of simple events in Q:
141 k
P(A)—WI—-:—S— (12)

The classical definition of probability is a good mathe-
matical model of random events for which the outcomes of
the experiment are symmetric in some sense, and it is, there-
fore, logical to assume that they are equiprobable.

Here is a description of two of the most frequently en-
countered probability schemes in which the general classical
definition is presented in detail. Let us designate as "
a set of N numbers: #° = {1, 2, ..., N}; suppose ® =
{igs gy « + -y ip) is an ordered collection of n elements of
the set . The probability scheme in which

Q= {0=_(>01p - b):ix€N, k=1,2,..,n}
(1.3)
and all elementary events in ® are equiprobable is called
sampling with replacement.
Sampling without replacement is such a probability
scheme in which

Q={0=0py iy .. 0L keN kE=1,2,...,mn
there are no identical elements among iy, .. ., in} (1.4)

and the elementary events in ® are equiprobable.
Various combinatorial formulas prove useful in calculat-
ing probabilities by formula (1.2). Here are the main
formulas. Suppose we are given a set .#° of N elements:
N = {a;, @, . .., ay}. The subsets of the set .f° are
called combinations. The number of combinations that can
be formed from N elementsof #°, using various methods to

choose subsets with n elements, is designated as C¥ or (ZZ) .
‘The following formulas hold true:

n N[n] n Nt n N-n
CN: n! ) CAY:‘F(N—-——-H—)_]—' CN:CN )
where n! = 1.2.. . .-n and
NIl = N (N —1). . .(N —n +1). (1.5)

‘The ordered chains Qg Qiy oo o @iy formed from various ele-

ments of f°, are called arrangements. The number of arrange-
ments formed by selecting various ordered chains of length
n from N elements of ° is designated as A¥. For A} we
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have a formula A} = NI[®l. A special case of arrangements
for n = N is called a permutation. The number of different
permutations formed from N elements is equal to N!
The following classical formula known as refined Stir-
ling’s formula (see [5], formula (9.8)) is useful in many

cases:
On

nl=V Zanwre e, p <0, <1 (16)

The formulations of some problems include the expression
‘the integer a is comparable with the integer b modulo m’
(m is an integer), or, in symbolic notation,

a=b (mod m). 1.7)
Comparison (1.7) is equivalent to the following statement:
there is an integer t such that a — b = tm (i.e. a and b,
when divided by m, leave the same remainder). In particu-
lar, the notation a = 0 (mod m) means that a is exactly
divisible by m.

We shall designate the integral part of the real number z
(the largest integer not exceeding z) as [z] (not to be con-
fused with a®), where z is an integer, see (1.5)).

Let us consider the second class of the general sample
spaces. Suppose € is a bounded set of an r-dimensional
Euclidean space. We shall assume that Q has a volume.
Consider a system £ of the subsets of Q which have volume.
For any 4 € 4 wet put

_ un(4)

P(4)= MOE (1.8)
where p. (C) is the volume of the set C. If by the volume of
a set we mean its Lebesgue measure, then the system £ is
the o-algebra of the Lebesgue measurable sets, and then
the function P (4), defined by formula (1.8), is a probability.
Note that in special cases, the system .4 contains all the
Jordan measurable subsets of Q, i.e ordinary squarable or
cubable figures studied in every course of mathematical
analysis. Most problems in this hook are concerned with
this particular case. The definition of probability (1.8) is
known as the geometrical definition of probability.

Here are some of the formulas most often employed in
problem solving. For any events A4;, A4,, ..., we have

A= ﬁ A—m ﬁ A, = G A_m (1'9)
n=14 = =

[ ]

n=14

11



(Here and in what follows a bar over a letter indicates an
opposite event.) The following formula is valid for any A
and B:

PA + B) =P (4) + P (B) — P (4B). (1.10)
For AB = &, in particular, we have
P4+ B)y=P @A)+ P (B). (1.11)

The probability of the sum of rn arbitrary events can be found
by the formula

P(A+dp+ ... +4) =2 P(A)— D P(Ardr)
k=1 1<<hi<ha<n

P (Ar, Ary Ars)

/
1<k1<ke<hz<n

— e (—1D)IP (A4, ... A))
(— 1)t > P(An ... 4y).  (1.12)

1 1<k, < T <<

I

[NSE

In all the problems given in Sec. 1.1 it is assumed that
the simple events are equiprobable; the terms ‘accidentally’,
‘chosen at random’ refer to the equiprobability of simple
events. The expression ‘the point is uniformly distributed
on the set Q’ in Sec. 1.2 means that the probabilities must
be calculated by formula (1.8).

1. Classical Definition of Probability

1.1. A box contains three tickets numbered 1, 2, and 3.
The tickets are drawn from the box one at a time. Assume
that all sequences of the numbers of the tickets are equiprob-
able. Find the probability that the ordinal number of at
least one ticket coincides with its own number.

1.2. A deck of 36 playing cards is well shuffled (that is,
all possible arrangements of cards are equiprobable). Find
the probabilities of the following events:

A = {four aces are dealt in succession},

B = {the places, occupied by the aces form an
arithmetic progression with a common
difference 7}.

12
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1.3. There is a three-volume dictionary among 40 books
arranged on a shelf in random order. Find the probability
of these volumes standing in increasing order from left to
right (the volumes are not necessarily side-by-side).

1.4. Three coins are tossed. Assuming the simple events
to be equiprobable, find the probabilities of the following
events:

A = {the first coin comes up heads},
B = {exactly two heads have occurred},
C = {not more than two heads have occurred}.

1.5. One sequence is chosen at random from the set of all
sequences of length consisting of the numbers 0, 1, 2.
Find the probabilities of the following events:

A = {the sequence begins with 0},

B = {the sequence contains exactly m - 2 zeros,
two of them being at the end-points of
the sequence},

= {the sequence contains exactly m unities},

{the sequence contains “exactly m, zeros, m,

unities, and m, twos}.

C
D

I

1.6. Two domino pieces are chosen at random from 28
pieces. Find the probability P, that a chain can be formed
from them in accordance with the rules of the game.

1.7. The last three digits of a telephone number beginning
135-3.-.. have been erased. Assuming that all combinations
of the last three digits are equiprobable, find the proba-
bilities of the following events:

A = {distinct digits, different from 1, 3, 5, have
been erased},
B = {identical digits have been erased},

C = {two of the missing digits coincide}.

1.8. What are the chances that a four-digit number on the
licence plate of a car chosen at random in a city: (a) consists
of different digits? (b) includes only two identical digits?
(c) includes two pairs of identical digits? (d) contains only
three identical digits? (e) consists of identical digits?

1.9. Find the probability p 5 that a natural number chosen

at random from the set {1, 2, . . ., N}isdivisible by a fixed
natural number k. Find lim py.
N-+x

13



1.10. A number a is chosen at random from the numbers
{1, 2, ..., N}. Find the probability p, that: (a) the num-
ber a is not divisible either by a, or by a,, where a; and a,
are fixed natural coprime numbers; (b) the number a is not
divisible by either of the numbers a;, a,, ..., az, Wwhere
the numbers a; are natural pairwise coprime numbers. Find
lvim Py in cases (a) and (b).

1.11. A number a is chosen at random from the set {1,
2, ..., N}. Find lim py, where py is the probability

Nox
that a® — 1 is divisible by 10. _
1.12. A number a is chosen at random from the set {1,
2, ..., N}. Find the probability p, that when divided by
the integer r > 1, a will leave a remainder ¢q. Find lim py.

1.13. An integer £ is chosen at random from the set
{0,1,2,...,10" — 1}. Find the probability that in decimal
notation this number is a k-digit number, i.e. it can be
represented as & = £,-10F"1 4 E,_-10%% + .+
£,-10 + E;, where 0<CE;<<9foralli=1, ... %k and
En >0 (k= 1). )

1.14. The numbers § and m are chosen at random from
the set of natural numbers {1, 2, . . ., N} with replacement.
Find the probability g that £ and n are coprime numbers.

Find lim gy using the familiar equation ) 1_ %—2
N-ooo n=1n2

1.15. The numbers £ and v are chosen at random from the
set of integers {1, 2, . .., N} withreplacement. If the prob-

ability of the event £2 + 1><{ N?is py, find lim py.

N-oo
1.16. The numbers§ and n are chosen at random from the
set of integers {0, 1, 2, ..., 10" — 1} with replacement.
Let p,, be the probability that the sum § 4 7 is an m-digit
natural number in decimal notation. Find the probabilities
Pn-k+1» k= 07 17 IRERTI (2 and qr = lim Pn-r+1s k=

N->oo
0,1, 2, ...

1.17. The numbers § and 1 are chosen at random from the
set of integers {0, 1, 2, ..., 10" — 1} with replacement.
Let p,, be the probability that the product &v is an m-digit
natural number in decimal notation. Find ¢, =
lim ponz, K=0,1, 2, ....

Noacx
L ]
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1.18. Show that in problems 1.14-1.17 the limit probabili-
ties will remain the same if the numbers § and 1 are chosen
at random from a single set without replacement.

1.19*, The number X and Y are chosen at random from
the set of natural numbers {1,2,..., N}, N> 3 with re-
placement. Find which is greater:

P, = P {X® — Y? is divisible by 2}
. or
Py =P {X® — Y? is divisible by 3}.

1.20. The numbers X and Y are chosen at random from the
set of natural numbers {1, 2, ..., N}, N> 6 with re-
placement. Show that

P{X*—Y*'=0(mod 2)} <P {X* — Y*=0 (mod 3)}
<P {X*—Y*=0 (mod b)}.

1.21. The numbers X and Y are chosen at random from
the set {1, 2, ..., N} with replacement. Using Fermat's
little theorem (if p is a prime number and the integer a is not
divisible by p, then aP-! =1 (mod p)), find the probabil-
Lity Qun (p) that the number XP-! — YP-1 js divisible
- by the prime number p. FindlimQy (p) = Q (p),

Noroo .
lim Qx (p) = Q.

,N—oo

1.22*, The numbers X and Y are chosen at random from
the set {1, 2, ..., N} with replacement. Show that when
N> 4,

A P {X?+ Y*=0 (mod 3)} < P {X® + Y3 =0 (mod 7)}.

 1.23. The sets A; and 4, are chosen with replacement
| from the collection of all subsetsof the set § = {1, 2, .. ., N}.
Find the probability that 4, N4, = @&.

1.24. The subsets A,, 4,, . .., A, are chosen with re-
placement from all subsets of the set § = {1, 2, ..., N}.
Find the probability that the sets 4, 4,, ..., 4, do not
intersect pair-by-pair.

1.25*%, An urn contains (2n + 1) cards labelled with an
ordered pair of integers (z, y) (z and y assume values from
j—n to n and each pair of numbers is written on exactly

one card). Three cards (&;, n1), (E5, M,), (Esy M3) are drawn
“from the urn without replacement. Let us consider these pairs
‘as the coordinates of the random points E,, B,, Ejofa

A

15



planeina Cartesxan system of coordinates.iFind the probablhty
pn that E; is symmetric with respect to E, , about Ej.

1.26. Ten dice are tossed. Assume that all combinations of
spots are equiprobable. Find the probability of the fol-
lowing events:

(a) not a single 6 is obtained;

(b) exactly three 6 are obtained;

(c) at least one 6 is obtained.

1.27. Some people consider a six-digit number on a tram
or bus ticket to be lucky if the sum of its first three digits
is equal to the sum of the last three digits. Find the . prob-
ability of obtaining a “lucky” ticket.

1.28 (see problem 1.27). Calculate the probability of
obtaining atleast one lucky ticket when n successive tickets
are bought, 1 < n << 9.

1.29, Ten different numbers are selected at random
from 30 numbers (1, 2, . . ., 29, 30). Find the probabilities
of the following events:

= {all the numbers are odd},
B = {exactly 5 numbers are dixisible by 3},
C = {5 numbers are even and 5 numbers are odd,
exactly one number being divisible by 10}.

1.30. From an urn containing M, balls labelled with the
number 1, M, balls with number 2, ..., and My balls
with the number &, we draw n balls at random without re-
placement. Find the probabilities of the following events:

(a) we draw m, balls labelled with the number 1, m,
balls with the number 2, . . ., and my balls with the num-
ber N;

(b) we draw each of the N numbers at least once.

1.31. The numbers &, and §, are chosen from the set of
numbers {1, 2, ..., N} without replacement. Find
P {&, >&,}. When selecting three numbers, find the prob-

ability that the second number lies between the first and =

the third.

1.32. From the set of numbers {1, 2, .. ., N} we chose n
different numbers without replacement. Arrange them in
increasing order: zy) << zy) << ... <<%p). Find the proba-
bility that z¢,, << M < 34n41); calculate its limit for N
M— oo, M/IN—> o €10, 1].

1.33. From the set {1 2, ..., N} we chose at random
k + 1 numbers z;, z,, . . ., xhﬂ without replacement. The

16



first £ numbers, arranged in increasing order, are desig-
nated zg) < Ty < .oo<<Zp). Find

P {z( < zhy < Ta4n )

1.34. Ten manuscripts are arranged in 30 files (3 files for
one manuscript). Find the probability that no 6 files select-
ed at random contain an entire manuscript.

1.35. The number of guests seated in random order at
a round table is 2r. What is the probability that the guests
can be divided into » nonintersecting pairs so that each pair
consists of a man and a woman sittig side-by-side?

1.36. Every ticket of the “Sports lotto” lottery contains
49 different numbers. The ticket holder marks 6 numbers on
each ticket. If his guess is correct, he wins the grand prize.
If he guesses only 3 winning numbers out of 49, he gets a con-
solation prize. A ticket holder marks numbers 4, 12, 20,
31, 32, 33 on the first ticket and numbers 4, 12, 20, 41, 42,
43 on the second ticket. What are the chances that the
ticket holder wins exactly two consolation prizes?

1.37. In an equiprobable scheme for arranging particles
in cells, the numbers of cells consecutively occupied by the
particles are obtained by random choice with replacement.

Let us designate as p, = u, (n, N) the number of cells
containing exactly r particles each after n particles have
been arranged in N cells. Find the probabilities of the fol-
lowing events:;

(8) po (ny N) >0 (for n = N);

(b) po (B, N) =0 (for n =N + 1);

() po(ny, N) =1 (for n =N + 1);

(d) there is a cell containing at least two particles (for
any ratio of n and N).

1.38 (see problem 1.37.) Find P {po(n, N) = 0} for
arbitrary n, N.

1.39. We arrange at random » mutually indistinguish-
able particles in N mutually distinguishable cells. (The
simple events are ordered samples of numbers (r;, 7y, . . ., T'y),
where ry is the number of particles in the kth cell, £ = 1,
2, ..., N.) Find the probabilities of the following events:

(a) Ho (nv N) >0;

(b) po (7, N) = 1.

1.40. There are n people in the first row of a theatre.
The row contains N seats. Assuming that all possible ar-
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