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Computational Fracture Mechanics

H. LIEBOWITZ
School of Engineering and Applied Science, The George Washington
University, Washington, D.C. 20052, USA

ABSTRACT

The field of Computational Fracture Mechanics is reviewed. The paper
focuses on the impact of computational methodology on furthering the
understanding of fundamental fracture phenomena. The current numerical
approaches to the solution of fracture mechanics problems, e.g. finite
element methods, finite difference methods and boundary element methods are
reviewed. The application of these techniques to the problems of linear
elastic fracture problems is discussed. Particular emphasis is placed on
three dimensional problems and the issues involved with surface crack
geometries and stress intensity factor calculations.

Numerical solutions of two dimensional ductile fracture problems are
surveyed. A special focus is placed on the effect of stable crack growth
on the field quantities and the implications of numerical solutions for
fracture prediction. Creep fracture problems are discussed. The simi-
larities and differences between creep and ductile fracture problems are
highlighted. The importance of large strain phenomena and accurate
modeling of nonlinear effects are highlighted.

The current state of knowledge of continuum fields for elastostatic cracks,
elastodynamic cracks, ductile cracks and viscoplastic cracks is summa-
rized. The range of applicability of asymptotic solutions (especially in
the nonlinear regimes) is highlighted.

Major research needs in computational fracture mechanics are detailed.
Emphasis is placed on coupled theoretical and numerical approaches.
Prospects for future research trends are proffered. Application of
fracture mechanics and computational fracture approaches are explored.

KEYWORDS

Crack propagation; failure prediction; finite element; fracture mechanics;
nonlinear methods; numerical methods; research needs.
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INTRODUCTION

The field of fracture mechanics has progressed significantly over the'past
thirty years. Fracture mechanics now provides a firm theoretical basis for
the prediction of fracture and the fracture-proof desisn of new structgtes
for many applications (most notably for applications with solely elastic
response). For other problems (where ductility or environmental effgcts
are present), fracture mechanics has progressed toward an understandxng and
theoretical framework for the future. While much additional research is
required before fracture mechanics can be considered a mature discipline,
it is recognized that significant advancement has been made. Fracture
mechanics is based on the assumption of a continuum material behavior of
the structural component under analysis. The effect of atomic spacing and
material microstructure, therefore, is assumed to be totally represented by
the constitutive equations employed in the continuum model. Hence, this
assumption is the major limiting factor in the development of a quantita-
tive, cohesive theory of fracture. The ultimate theory of fracture should
attempt to couple the microscopic and macroscopic fracture characteristics
in a coherent manner. This task is a major requirement of future research
in fracture mechanics.

The advent of the digital computer made it possible to solve engineering
and scientific problems by using numerical techniques. Many problems which
could not be addressed analytically could (at least in theory) be solved
numerically. As computers have become faster, cheaper, more powerful and
more widely available, the number of problems which are addressed numeri-
cally has grown exponentially. The field of fracture mechanics has bene-
fited dramatically from the use of the digital computer. Routine use of
Linear Elastic Fracture Mechanics (LEFM) in fracture-proof design can be
largely attributed to the ability to solve fracture problems routinely
using digital computers. Critical technology problems involving material
and geometric nonlinearities have been addressed successfully using
numerical solutions. Indeed, many application areas would have been
significantly hindered (if not stopped) without the numerical solution of
fracture problems. In addition, much fundamental understanding of the
behavior of materials containing cracks has been gained through numerical
simulation of fracture problems.

The purpose of this paper is to provide a critical examination of the
impact of numerical methods on the field of fracture mechanics. For the
purposes of this discussion, fracture mechanics problems will be subdivided
into three major classes: Linear Elastic Fracture Mechanics (LEFM) prob-
lems (both static and dynamic), problems involving composite materials, and
ductile fracture problems (including rate dependent problems). These broad
topics represent the major areas of challenge and application of the field
of fracture mechanics.

The paper starts with a discussion of the major numerical approaches
available for the numerical solution of boundary value problems. Emphasis
is placed on the Boundary Integral Equation Method (BIEM) and the Finite
Element Method (FEM). These approaches are the major methods employed for
the solution of fracture mechanics problems. Historical note is made
concerning integral equation methods and finite difference methods.
Emphasis in this section is on the strengths, weaknesses and successes of
the methods to date.

The problem areas of LEFM and ductile fracture problems are then considered
in turn. The emphasis in each section is placed on highlighting the impact
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of numerical solutions on the understanding of each problem area and the
application of the methodology to design considerations. glso §onsidered
is the role of asymptotic and analytic ideal problem solutions in the‘
numerical solution of real engineering problems. An important issue is the
value of numerical solutions and the delineation of their limitations.

After surveying the major problem areas and their state of the art, the
discussion turns to the major needs of fracture mechanics and the role that
numerical methods can play in fulfilling these needs. The majority of this
centers on the role of computer simulation, visualization and the interpre-
tation of results. Emphasis is on coupling accurate numerical solutions to
physical insight and understanding. A very important concern is the
consideration of the numerical solution needs in the formulation stage.

The paper concludes with a discussion of the major obstacles and challenges
that face researchers in the numerical solution of fracture mechanics
problems. Coupling of numerical and theoretical advances and approaches is
emphasized. An attempt is made to focus on those issues which can shed
important light on the open questions in the field of fracture mechanics.

NUMERICAL METHODS FOR SOLUTION OF FRACTURE PROBLEMS

The problems of fracture mechanics reduce to the solution of boundary value
problems (which may be static or dynamic) which have mixed boundary condi-
tions. These mixed boundary conditions can give rise to singularities in
the stress and strain fields. The problems may involve both material and
geometric nonlinearities which complicate the formulation and render
prediction of convergence extremely difficult. Because little can be done
with these problems analytically, numerical methodologies are required.

The advent of large scale computers coupled with the rapid growth in the
field of algorithmic methods render many of the problems of fracture
mechanics tractable today.

The finite difference method is the oldest technique for the solution of
boundary value problems and was widely employed in the 1960s. The method
directly involves the solution of the governing differential system in an
approximate manner by subdividing the domain of interest into a connected
series of discrete points called nodes. These nodes are the sampling
points for the solution and are linked using the finite difference
operators to the governing equations. For example, the second order finite
difference operator for the second partial derivative of a two dimensional
field variable is given by

3y - w(xi+l,yj) - 2b(x,y) + w(xi_l,yj)

kY (x)° (1

where ¢ is the field variable and x and y are the independent spatial
variables. This is a second order difference operator and the error is
proportional to the square of the mesh spacing in x ( 0( 4x2) ).
Employment of the finite difference operators results in a system of
algebraic equations for the discrete nodal values of the field variable.
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Gradients can be evaluated by employing finite difference operators to the
discrete solution.

Finite difference methods can be used to discretize both space and time.

In addition, they provide easy error estimation techniques. Unfortunately,
finite difference methods are difficult to use for irregularly shaped
domains. Often absurd discretization is required for accurate solution,

In addition, it is difficult to implement meshes without equal grid
spacing. Convergence is difficult to gauge with this characteristic. An
excellent discussion of the finite difference approach to the solution of
partial differential equations can be found in Lapidus and Pinder (1982).

Finite difference methods have not performed very well for problems
involving singularities. One major reason for this is that the fine
meshing required near a singularity cannot easily be reduced for the rest
of the domain. Special finite difference techniques which directly handle
singularities can be developed; however, they have not been very successful
for practical applications. Computational requirements for convergence are
larger than for finite element and boundary element solutions. The finite
difference method is not seriously employed for fracture problems today.

In addition to finite difference methods, integral equation methods are a
historic approach to the solution of fracture problems and are still used
by some researchers today. The basic approach employed involves an
analytic formulation of the elasticity problem to the point of a singular
integral equation. The singularity is then extracted and the result is a
nonsingular integral equation which can be solved qQuite accurately with any
number of techniques. This approach yields excellent solutions, however,
it requires an extensive analytic formulation which is different for each
new problem. The method is quite useful, nonetheless, for establishing
benchmark solutions to compare with other methods as the degree of accuracy
can be guaranteed. The method is only applicable to elasticity problems
(no nonlinearities). For three dimensional problems, it is almost
impossible to derive the integral equations in a finite period of time. An
excellent discussion of the method can be found in Muskhelishvili (1953).

Two major numerical approaches are available for the solution of fracture
mechanics problems today: the Boundary Integral Equation Method (BIEM) and
the Finite Element Method (FEM). These techniques have been widely
researched and developed. For two dimensional Linear Elastic Fracture
Mechanics (LEFM) problems, either can be employed with much confidence and
accuracy. Both BIEM and FEM are actually a class of approaches with many
variants which allow a flexible approach for modeling many areas of
application. The discussion of each given below will focus on the methods
as they commonly are applied to fracture mechanics problems and the
variants employed by some authors for better solution characteristics.

The BIEM method is a numerical approach to the solution of linear boundary
value problems with known Green's function solutions. The boundary of the
domain of interest is discretized using "elements" which are interconnected
at discrete points called nodes. For a three dimensional problem, the mesh
is two dimensional; for two dimensional problems, the mesh is one
dimensional. The boundary value problem is formulated as an equivalent
surface or line integral using the Green's function solution and the
governing differential system. For linear elasticity in two dimensions,
the formulation is based on Betti's theorem and the resulting system of
equations is given by
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(1,k = 1,2) )
where up and t) are the surface displacement and traction vectors,
is the domain boundary, and Ujy and T;y are related to the Green's )
function solutions for displacement and tractions. At each boundary point,
either u or t is specified and the other variable is unknown. These relate
to the physical field variables in question. A complete discussion of the
_approach can be found in Banerjee and Butterfield (1981)

The BIEM method is a quickly convergent, highly robust method for the
solution of linear boundary value problems. It is relatively easy to
employ and general purpose commercial software can be developed around the
method (the BEASY code is a widely available example; see BEASY in
References). Because the surface of the domain need only be discretized,
it is easier to use the BIEM than the FEM (to be discussed subsequently).
For static problems, the BIEM method reduces to the solution of a system of
dense linear equations which may be nonsymmetric (although methods of
symmeterizing the systems recently have been very successful). If surface
data is the only quantity required (as is the case in many fracture
problems where the only interesting results are the stress intensity
factors and the compliance), the BIEM is often computationally superior to
the FEM for two dimensional problems. If interior data is required, the
method is computationally costly. For three dimensional problems, BIEM
solutions are often very expensive as the resulting linear system is dense,
unbanded and often nonsymmetric. Ongoing research, however, is addressing
this problem rapidly. BIEM solutions often yield excellent results for
field quantities and their gradients (e.g. displacements and strains).
Primary unknown predictions on par with FEM solutions usually predict
better gradients within the BIEM concept.

For applications in fracture mechanics, the BIEM has received a good bit of
attention recently. For two dimensional problems, the BIEM can be employed
for the solution of fracture problems with much success. Mesh generation
is quite simple and users can master the techniques rapidly (much more so
than for the FEM). Accurate solutions can be obtained and reasonable error
estimates can be predicted. It is certainly competitive with the FEM if
not better for these problems. The numerical techniques employed for
fracture mechanics problems are summarized in Table 1.

Three dimensional LEFM problems have been solved using the BIEM without
great success. These solutions are quite costly and often do not produce
good solutions. As an example, consider the problem of an edge cracked
rectangular bar subjected to uniaxial uniform tensile stress as shown in
Fig. 1. The resulting stress intensity factor distribution is shown in
Fig. 2 and is compared with well established finite element results. It
can be seen that near the midplane the results agree well. Far from the
midplane, however, resolution degrades. Because it is well known that FEM
solutions of surface crack problems overestimate the boundary layer effect
near the free surface, the BIEM results are in error (Rooke et al., 1987).
Interior crack problems have been solved successfully; however, this is not
a sufficient test of the method. Ongoing research hopefully will address
this problem, although the BIEM is not a current competitor for three
dimensional problems.
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Table 1. Numerical methods for the solution of fracture
problems
Method Strengths Weaknesses
Finite Easy to employ Slow convergence
Difference X
Error estimates available Uniform mesh requirements
Cannot model singularities
Finite Good convergence Modeling is difficult
Elements
Singularities can be Few exiting error
modeled estimators
Boundary Modeling is easier Computationally more
Elements expensive for most
Error estimation problems
is easier
Converge slowly for
singular problems
Hybrid Good for specific Usually developed for
Approaches problems restricted problem class

Generally very

Often difficult to

accurate implement
/)\ /\
A//b
~N UT
h
h
[ J
|
o
Fig. 1 Edge cracked rectangular bar subjected to

uniaxial uniform tensile stress
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Fig. 2. Variation of the stress intensity factor
along the crack front

Much effort has been focused recently on the extension of BIEM to nonlinear
problems where known Green's functions do not exist. This work is in its
infancy and it is fair to say that the approach has yet to impact the field
of fracture mechanics. Indeed, available solutions to problems with
extensive nonlinear material behavior are disappointing (e.g. Wilson et
al., 1985). Ongoing research may establish BIEM approaches to nonlinear
problems which produce reasonable answers. For nonlinear problems,
analytical Green's functions are not available. A variational approach
with assumed trial and weight functions must be employed. The formulation
is similar to that employed by the finite element method. The BIEM,
therefore, will have the same approximate formulation as the FEM.

The FEM is the most widely employed numerical method for the solution of
fracture mechanics problems. The formulation of the FEM is based on a
variational statement of the governing physics. For the problems of linear
elasticity, the principle of Virtual Work, given by

£ oij 651j dv = é oij nj Gui ds

(3)

is employed where oy is the stress tensor, Geij is the virtual strain
tensor due to virtual displacements Suj and ny is the normal vector to the
surface of applied tractions. The domain is discretized into subdomains
(elements) which are interconnected through common discrete points
(nodes). The primary unknown field variables are nodal values. The
formulation reduces the problem to the solution of a system of algebraic
equations in terms of the nodal variables (for dynamic problems, the result
is a system of ordinary differential equations). Finite element systems
tend to be relatively banded and symmetric for most problems. The
resulting systems can be solved using a number of techniques. For
nonlinear problems, algorithms are also available, however, accuracy and
convergence are much larger problems.
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