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General Preface to the Series

Because it is no longer possible for one textbook to cover the whole field
of biology while remaining sufficiently up to date the Institute of Biology
has sponsored this series so that teachers and students can learn about
significant developments. The enthusiastic acceptance of ‘Studies in
Biology® shows that the books are providing authoritative views of
biological topics.

The features of the series include the attention given to methods, the
selected list of books for further reading and, wherever possible,
suggestions for practical work.

Readers’ comments will be welcomed by the Education Officer of the
Institute.

1979 Institute of Biology
41 Queen’s Gate
London SW7 SHU

91f04u



How to Use this Book

Statistics is not presented here as a branch of mathematics but as a logical
commonsense development from very simple beginnings. The difficul-
ties, such as they are, do not lie in mathematical manipulation but in
grasping a few simple but unfamiliar concepts. Learning to apply
statistical methods is rather like learning to swim or drive a car. One
does not become fully proficient immediately and certainly not by just
reading and thinking about it. Practical experience is all important.
Through practical experience one acquires practical skills and real
understanding.

Do not wait until you have some numerical data to analyse before
turning to this book. Start now, at the beginning, and try to understand
why biologists need to think in terms of statistics and to employ
statistical methods. Then, whether you are convinced or not, work
steadily on through the book. Master each section as you go, attempt all
the problems at the ends of the chapters, and check your numerical
solutions and logical conclusions with the solutions provided. You will
not regret making the effort: the understanding and skill that you acquire
will be of lasting value to you, both in your biological work and outside.

Belfast 1978 R.E. P.



1 Probability and Statistics

1.1  Why statistics?

The first problem that most students of biology have with statistics is
in understanding why they need to study the subject at all. It is possible,
during the first few years of biology at school, to learn a great deal about
animals, plants and biological systems in terms of discoveries made by
biologists in the past. It takes more than this, however, to make a real
biologist. A biologist must understand how biological knowledge has
been obtained and is being constantly modified and extended by
research. It is here that an appreciation of the role of statistics becomes
meaningful. For a biologist aiming to make his or her own contribution
to biological knowledge some understanding of statistics is essential.

An appreciation of the role of statistics in biology comes most easily
through personal involvement in biological investigation, hence the
importance of project work, provided that its objective is to discover
something new. In part, the role of statistics is direct, enabling us to make
statements and draw conclusions of scientific significance from the
limited evidence we have obtained by the examination of one or more
relatively small samples. For example, suppose as part of a study of the
effect of geographical isolation we wish to make statements about the
body measurements of the population of field mice on a certain island.
We could never hope to catch all of the mice, there might be many
thousands, so we trap a sample of them (perhaps 50) and measure this
representative group. But when reporting our finding of, for example,
‘mean tail length’, we would want this to relate to the population as a
whole and not just to our small sample. We could do this by using
confidence limirs (see Chapter 2).

Again, suppose that we wished to compare two ‘wetting agents’ as
additions to foliar fertilizers. In our experiment we would only be able to
treat a limited number of, for example, lettuce plants, but our con-
clusions would need to apply to all lettuces of the particular variety used
in the experiment. Before concluding that there was no real difference
between the wetting agents or that one was more effective than the other
we would be likely to need a test of significance (see § 1.4 and Chapter 3).

Another role of statistics lies in the simplification of data with the
detection and definition of trends or relationships. In biology observed
relationships are rarely clear-cut. Even when an underlying relationship
is simple our picture of it is often confused by uncontrolled variation.
This role can be seen in a simple form in Chapter 8, where the linear
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component of the relationship between temperature (°C) and water-loss
(mg) of a group of mice is extracted and defined by means of linear
regression. With advances in techniques of environmental sensing, and in
the recording and processing of data, the role of statistics in simplifi-
cation and extraction of trends is increasing. Even when a computer is
used for the data processing it must be programmed with the appropriate
statistical instructions. The use of statistical methods as tools in biology
has had several important repercussions. The introduction of new
physical and chemical methods, such as the electron microscope,
radioisotopes, and chromatography, led to the opening up of new fields
of biological enquiry. The same is true of statistics: there are branches of
biology which only became possible with the development of the
necessary statistical tools, for example, quantitative population genetics.
More generally, advances in the design of biological surveys and
experiments have come about as a direct result of development in
statistical techniques. The close relationship between experimental
design and data analysis is discussed in Chapters 9 and 10.

1.2 Probability

Whenever we draw conclusions relating to whole populations from
the evidence of samples, for example, when we fit confidence limits or
make tests of significance, these conclusions are always couched in terms
of probability. In statistics probability takes on a full quantitative
meaning, having values ranging from zero which is equivalent to
impossibility, to unity which is equivalent to complete certainty. There
are two ways of estimating the probability of a particular kind of
outcome: one, a priori, is from some knowledge of the underlying
process, or at least some hypothesis concerning it, e.g. for a cross between
a heterozygote (Gg) and a homozygote (gg) we can estimate the
probability of a single random offspring being (Gg) as 0.5, the same as its
being (gg). The other way, empirical, is by observation of the outcome of
a number of actual trials, thus:

number of successes
number of tnals

estimated probability, p =

where a ‘success’ is the kind of outcome in which we are interested. For
example, the probability of a seed, taken at random from a population,
being capable of germination may be estimated by carrying out a
germination test on a sample of seeds from that population. The results
of such a test are conventionally expressed in the form of a percentage
(i.e. 100 x p). In general, the larger the sample examined the more closely
will the estimated probability approximate to the true one.

In order to find out why observations tend to fall into classes with the
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frequencies they do, we compare the observed frequencies with the
frequencies which would be expected on the basis of a particular
hypothesis. To obtain an expected frequency we simply multiply the
expected probability by the total number of trials. For example, if we
wished to discover whether two dominant genes were linked we could
backcross double heterozygotes (AaBb) with double recessives (aabb)
and count the number of organisms in each of the four phenotype
classes. If the genes segregate independently (i.e. if there is no linkage) the
expected probability for each class is the same and equal to 0.25. If we
have a total of 400 offspring the expected frequency of each class would
be 400 x 0.25 = 100. Note that every individual must belong to one of the
four classes and that with equal probability of it falling in each one we
partition the total probability of 1.0 into four equal parts of 0.25. (If we
had chosen to make the F, x I, cross the partition would have been
into: 9/16, 3/16, 3/16, and 1/16.)

1.3 Probability distribution

In partitioning the total probability of 1.0 into several components,
each corresponding to a different kind of outcome, we are exposing a
simple probability distribution. We need to look more thoroughly into
this because the distribution of probability is the key to a great deal of
statistics. Let us begin with the simplest kind of situation, one in which at
a single trial there are only two kinds of outcome.

Suppose that in an investigation of the relationship between a certain
beetle species and its environment we wish to test the hypothesis that its
known sensitivity to humidity is located in its antennae. We could take a
beetle, remove its antennae, and place it in a choice-chamber where two
different levels of humidity were maintained. If our hypothesis is true the
probability of beetle choosing the high humidity is the same as the
probability of its choosing the low, and is equal to 0.5. Provided that the
choice-chamber was of suitable design two beetles could be introduced at
the same time. What would the probability distribution be now? There
are three different possible types of outcome: both move to high
humidity, both move to low humidity, or one moves to high and the
other to low. The corresponding probabilities are given in the table
on p. 4.

Note that the probability of both beetles behaving in the same way is the
product of the individual probabilities, as two conditions must be
fulfilled before the outcome is attained. Also note that the probability of
a mixed outcome is the sum of the probabilities of the different ways in
which the same outcome can be attained. The table also shows the
possible types of outcome and their probabilities for groups of three and
four beetles. In this simple example the expected probabilities can be
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Number of Possible Number of
beetles outcomes possibilities
1 H() L) 2

HL
2 4 1 ;
HH(1/4) ) LL{1/4) 3
HHL HLL
3 HHH(1,8) HLH(3/8) LHL(3/8) LLL(1/8) 4
LHH LLH
HHLL
HHHL HLHL HLLL
HHLH HLLH , ., LHLL
4 HHHH (116) a4 Preiao) preed) LLELUCIe) S
LHHH LHLH LLLH
LLHH

casily worked out from first principles. More generally we compute the
probabilities by expanding the expression (p+g)" where p is the
probability of an individual, taken at random, falling into one of the two
mutually exclusive catagories, ¢ = 1 — p(i.e. the probability of its falling
into the other), and n is the number of individuals in the group. Forn = 4
this gives:

(p+q* =p*+4p’q+6p*q* +4pqg® + ¢4*

You may recognize this as the binomial expansion. The distribution of
probability is discontinuous because however large the group (n) there
will always be a finite number (n+1) of categories. In the present
example the distribution is symmetrical. This is because p = 0.5 = q.
More generally p # 0.5 and the distribution is asymmetrical.

1.4 Tests of significance

Suppose that we have conducted an experiment in which we placed
eight beetles from which the antennae had been removed in a choice-
chamber with high and low humidity compartments, and that all eight
had moved to high humidity. What would we conclude? With such an
extreme result we would probably be left in no doubt that the beetles
were still sensitive to humidity differences and that our hypothesis
should be rejected. But first examine Fig. 1-1 which represents in the
form of a histogram* the probability distribution corresponding to
(p+ q)® where p = 0.5 =¢. You will see that the outcome with the

* Conventionally such discontinuous distributions are represented by bar
charts. Histograms are used here to emphasize the similarity between discon-
tinuous distributions and continuous distributions to be met with later.
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Number of beetles moving to high humidity

Fig. 1 -1 Probabilities of different numbers of beetles, from 8 to 0, moving to
high humidity: p = 0.5.

highest probability, the expected outcome, is the one with equal numbers
of beetles moving to high and low humidity. The observed result, if the
beetles are insensitive to humidity (i.e. if p = g), has a probability of
p® = 17256 (c. 0.004). We have therefore either to retain our hypothesis
and accept that a very unlikely event has occurred or to reject our
hypothesis and replace it with one in which p > 0.5. With such a low
probability we would normally modify our hypothesis and conclude that
the beetles were still sensitive to humidity differences, even with
antennae removed.

The test consists of the computation of a probability corresponding to
the result observed on the assumption of a particular hypothesis. If the
probability is low (conventionally < 0.05) we conclude that the hy-
pothesis is incorrect. If the probability is high (conventionally > 0.05) we
conclude that the departure from expectation is not great enough for the
hypothesis to be rejected. In general, it is necessary to take into account
other possible outcomes which depart an equal or greater amount from
expectation. In the above example there is only one other outcome with
as great a departure, i.e. eight beetles moving to low humidity. We do not
need to take account of this because intact beetles are known to move to
high humidities and so the possibility of the opposite kind of behaviour
does not arise. We are making what is known as a ‘one-tailed’ test (see
also § 4.4).

It might be argued that in the example above we had no need of
statistics because the conclusion was self-evident. Results are not always
as extreme. Suppose that only six beetles had moved to high humidity the
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remaining two moving to low. It could be argued that as the beetles have
shown a marked preference for high humidity they must still be sensitive
to humidity differences and our hypothesis should be rejected. It might
also be argued that as some beetles moved in each direction our
hypothesis should be retained. This is just the sort of situation in which
statistics can help. If we again turn to Fig. 1 1 we see that the probability
corresponding to the observed result is now much greater. It is in fact
28p°g? = 28,256 = 0.1094. Before making the test, however, we must
take into account the two more extreme results, i.e. of seven and eight
beetles moving to high humidity. The total probability of the three types
of outcome is 28,256 + 8,256 + 1,256 = 0.1445 (c. 1/7).* This is well in
excess of 0.05 (1,20) and so we would regard the observed departure
from expectation as not significant and retain the hypothesis that the
beetles have been rendered insensitive to humidity differences. In fact,
tests of this kind, if repeated, would be expected, on average, to give as
large or larger departure one in seven times, even though the beetles
had been rendered insensitive.

In this first chapter we have become acquainted with the ways in which
probability can be treated quantitatively, in particular how it can be
partitioned to yield discontinuous probability distributions. We have
also seen how we can use such a distribution in making tests of
significance. Discontinuous distributions are related to observations of
discrete events. Such observations are of great importance in biology and
we will be examining the methods for their analysis in some detail in
Chapters 4 to 7. In Chapters 2 and 3 we will direct our attention to
observations which take the form of measurements on a continuous
scale. The probability distributions of such measurements are con-
tinuous and this presents us with rather different problems and
opportunities for analysis.

Problems

1-1 Inachoice-chamber experiment like the one examined above what
is the smallest number of beetles that could be used in an experiment and
still give a significant result in a ‘one-tailed’ test?

1 -2 A reasonable a priori probability of a child, taken at random, being
a boy is 0.5, this being consistent with equal numbers of male and female
sex chromosomes on gametogenesis in the male parent. How large a
family, consisting of children of the same sex, would a biologist need to
have before rejecting the general hypothesis of Ppoy = 0.5 = pyiy as
applicable to his or her own relationship? (Assume the conventional
significance level of 0.05.)

* This is, of course, again a ‘one-tailed” test.



2 Continuous Distributions:
Confidence Limits

2.1 A population represented by a sample

The populations about which we wish to make statements and draw
conclusions are represented in biological surveys and experiments by
samples (see § 1.1). These samples consist of individuals. In some
investigations these individuals are whole plants or animals but more
generally they range from individual cells, or even organelles, to plots of
forest trees. They can take the form of organs, tissue preparations,
extracts, and even environmental locations. Despite this diversity they
have in common the fact that they contribute an item of information
relating to one or more of their attributes. For the moment we are
concerned only with situations in which there is information relating to
one kind of attribute and in which the information consists of
measurements on a continuous scale, such as weight, volume, area,
length, concentration, rate, pH, etc.

Suppose that as part of an autecological study of the bracken fern
(Pteridium aquilinum) we wished to assess the performance of the fern
within a certain area, Area 1. Frond {leaf) length could be included
among the performance parameters. There are thousands of fronds in
the population of the area and they vary conspicuously in length. We
might decide to measure a sample of 100 fronds. Clearly the sample
should be representative and must therefore be selected without bias.
This is more difficult to achieve than it might appear, simply measuring
one frond here and another there in an irregular manner will not do.
Ideally we should take a random sample but we will leave this problem
for now and assume that the lengths of 100 fronds have been measured.
The 100 measurements are added together and divided by the number of
fronds (100) to obtain an average or mean length. This is a sample mean
and it is our best estimate of the population mean. A simple statement of
our sample mean, with the unstated implication that the population
mean is likely to be rather similar, is not likely to be very satisfactory
when we come to make comparisons between different areas and try to
draw meaningful conclusions. We need to assess and state in some way
the reliability of our sample mean as an estimate of the population mean.
We can do this by attaching confidence limits.

2.2 The normal distribution

Clearly the reliability of a sample mean is bound up with the
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variability of the individual measurements and with the number of them
that we have to average. We need then some measure of variability. The
measure that we use is related in an important way to the kind of
probability distribution shown by the individual measurements. For-
tunately there is a strong tendency for the measurements of individuals
in different populations to show the same kind of distribution, the
normal distribution.

If we had measurements for a large number (for example 1000) of
individuals in a population, e.g. frond length as in our example, we could
group the measurements into size classes, count the number falling into
each size class, and plot a frequency histogram to show how the
individual measurements were distributed. (NB Measurements fall
automatically into size classes if they are made to a certain degree of
precision only.) As probability is the ratio of frequency to the total
number of measurements (see § 1.2) the frequency histogram could be
rescaled to illustrate the corresponding probability distribution. It
would now indicate the distribution of probability of an individual
measurement, taken at random, falling into each size class. The
histogram produced is likely to be more or less symmetrical and to have a
bell-like outline. In some respects it would resemble the histogram for a
symmetrical binomial distribution, (Fig. 1-1), but would differ from this
in two important respects. The range of a binomial distribution is fixed
by the number of events recorded in each trial but the range of the
population of measurements is not limited in this way. The number of
classes in the binomial distribution is also fixed, (n+1), and the
distribution of probability essentially discontinuous. We could not read
from Fig. 1--1 the probability of 53 beetles moving to high and 24 beetles
moving to low humidity. On the other hand, by making measurements to
a high degree of precision and making enough of them a histogram could
be prepared with a very large number of very narrow size classes and an
outline that would approach closely a smooth curve. The theoretical
curve towards which many natural probability distributions tend is
called the normal curve.

2.3 Mean and standard deviation

Clearly the normal distribution cannot be defined in the same terms as
a binomial distribution. The normal curve is defined by the expression:

1
o/(2n)
Fortunately we can use the properties of the normal distribution without
using this expression but there are several important points to note about

it. The variables X and Yare related through two parameters y and o. p is
the mean, the point about which the distribution is symmetrical, and o is

e -[(X =w20%]
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the standard deviation, a measure of the variability or spread of the
measurements about the mean. The important point is that a normal
distribution is completely defined by these two parameters; the other two
quantities © and e are, of course, constants. Thus, if we know the
standard deviation of a population we have the key to the distribution of
probability about its mean. In practice we rarely know the population
standard deviation, o, but have to estimate it as s from the sample
measurements. We can estimate g as s = \/[Z(X —X)?/(N —1)], where
the numerator is the sum of the squares of the deviations of X from its
mean, and the denominator is one less than the number of measure-
ments. You may wonder why the denominator is not N. If we knew the
population mean (i) the correct denominator would be N, but in
practice we have to estimate u as X. If we have N values of X and
compute X = ZX /N, then we have only (N — 1) values of X which are
independent of X, in other words we have only (N —1) degrees of
freedom. Having determined X the Nth value of X is also fixed. The
above formula is rarely used to evaluate s because to do so is
unnecessarily laborious and usually introduces rounding errors. Instead
we use the algebraically equivalent expression:

(ZX)*
x2-==l
> N

N-1

NB Z X2 denotes the sum of the squares of all values of X taken singly,
and (2 X)? denotes the square of the sum of all values of X. The quantity

(X —X)?=ZX?-((£X)?/N)issooften met with that it is referred to
as the sum-of-squares of X and is denoted by Zx?.

We have already seen in section 1.4 that given a hypothetical
probability (p) and a group size (n} we can compute the terms of the
corresponding binomial distribution and draw a histogram illustrating
the probability distribution. From this histogram we can read off the
probabilities of different kinds of outcome in terms of the heights or
areas of the corresponding rectangle or rectangles. Figure 2-1 shows the
probabilities of the seven difterent kinds of family composition for a
family of six children, assuming py,, = 0.5 = p,. The probability of a
family including one or two boys is indicated by the total area of the two
shaded rectangles. Now, in much the same way, the probability of an
individual measurement, taken at random, falling between two stated
values of X is given by the area of the figure bounded by the appropriate
normal curve and the X axis. and lying between the verticals correspond-
ing to the two X values. Figure 2--2 shows the probability distribution for
heights of adult human males in a population. The probability of a man,
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Fig. 2 1 Probabilities of the 7 different kinds of family composition for a
family of 6 children: pmaie = Premaie = 0.5. The probability of a family including 1
or 2 boys is indicated by the area of the two shaded rectangles.

Probability

1.50
1.80
1.901

1
o wn
~ ~

1551
1.60
1.65F

o wn wn n o
Y ¥ °°. % 2 Height (m)
- - ~

Fig. 2-2 Probability distribution for the heights of human adult males in a
population. The probability of a single individual taken at random having a
height falling between 1.75 m and 1.85 m is indicated by the area of the shaded
part of the figure.

taken at random, having a height between 1.75 and 1.85 mis indicated by
the area of the shaded part of the figure.

The shape of a particular normal curve, and therefore the correspond-
ing distribution of probability, depends entirely on the standard
deviation of the normal distribution which it represents. It is possible
therefore to draw up tables for the areas beneath the curve (in terms of
probability) between certain limiting values of X, provided that such
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values are expressed in terms of standard deviation units. Such tables are
then true for all normal distributions. For example, we can read from
such tables that the area between the line of symmetry (at X = y)and the
line at one standard deviation above (u + ¢ ) or below (it — ¢) corresponds
to a probability of 0.3413. Thus we can say that there is a probability of
0.6826 of a single value, taken at random, falling within one standard
deviation of the mean. Similarly, a single value has a probability of 0.95
of falling within 1.96¢ of the mean. In terms oflrequency this means that
68.26" of all values lie between the limits x + o and 95", of all values lie
between the limits u + 1.964 (Fig. 2-3). The probability that an individual
value, taken at random, would fall within this range is 0.95: conversely
given an individual value we can say that the probability of the true mean
falling within 1.966 of it must also be 0.95. It might appear at first sight
that we have here a way of describing the reliability of a single random
observation in estimating the population mean. Our estimate of the
mean would be the single measurement and there would be a probability
of 0.95 of the population mean lying within + 1, 964 of it. The snag, of

Probabi

1.96 «r 95 + 1.96 g

Size of individual value -

Fig. 2-3 Probability limits for the normdl dlstrlbuuon defined in terms of
standard deviation (o). (a) 68.26". and (b) 95",.
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course, is that a whole series of measurements would be needed for the
estimation of the standard deviation. '

2.4 Standard error of the mean and confidence limits

If a series of measurements were available we would use their mean to
indicate the population mean rather than rely on a single measurement
to do so. If a sample mean 1s to be used in this way we would need to
know something about the distribution of sample means. We have seen
that if we take a very large sample of measurements from a population,
divide it into a series of small size classes and plot a frequency histogram,
the outline of the histogram approaches a normal curve. If we were now
to take these measurements in random groups (of N), calculate the means
of these groups and prepare a frequency histogram from these, its outline
would again approach a normal curve but one with less spread, i.e. witha
smaller standard deviation (Fig.2—4).It may be shown that the standard
deviation of the means of N measurements from a population with a

standard deviation of 6 is o/ \/ N. Conventionally the standard deviation
of a mean is known as its standard error. In the same way that we could
use the standard deviation to describe the reliability of a single random
measurement in indicating the population mean so we can use the
standard error to indicate the reliability of a sample mean in doing so.
Thus, having computed X (as £ X/N) we can state that this is our best
estimate of the true mean (u) and attach confidence limits at a chosen level

0.10
10.15

0.005}

Probability

Flg 24 Normal curves (a) for md1v1dual values of X with u = 50and ¢ =5,
dﬂd\ib) for means of ten values. 95° probability limits for means of 10 values.



