B

ELLIS HOROWITZ - SARTAJ SAHNI

Fundamentals of

DATA STRUCTURES
IN PASCAL

ELLIS HOROWITZ

University of Southern California

SARTAJ SAHNI
University i Minnesota

COMPUTER SCIENCE PRESS

Copyright © 1984 Computer Science Press, Inc.
Printed in the United States of America.

All rights reserved. No part of this book may be reproduced in any form
including photostat, microfilm, and xerography, and not in information
storage and retrieval systems, without permission in writing from the pub-
lisher, except by a reviewer who may quote brief passages in a review or as
provided in the Copyright Act of 1976.

Computer Science Press, Inc.
11 Taft Court
Rockville, MD 20850

2 3 4 5 6 Printing Year 89 88 87 86 85 84

Fundamentals of Data Structures in Pascal is another version of Funda-
mentals of Daia Structures by Horowitz and Sahni. In the earlier work, all
of the algorithms are written in the SPARKS language while in this work
all the algorithms are written in the Pascal language.

Fundamentals of Dara Structures
Copyright © 1982 Computer Science Press, Inc.

Fundamenials of Data Structures
Copyright © 1976 Computer Science Press, Inc.

Fundamenials of Data Structures in Pascal is the result of the combined
efforts of the authors. Their names have been listed in alphabetical order
with no implication that one is senior and the other junior.

Library of Congress Cataloging in Publication Data

Horowitz, Ellis.
Fundamentals of data structures in Pascal.

Bibliography,
Includes index.
1. Data structures (Computer science)
2. Pascal (Computer program language)
1. Sahni, Sartaj. II. Title.
QA76.9.D35H67 1983 001.642 83-10136
ISBN 0-914894-94-3

PREFACE

For many years a data structures course has been taught in computer
science programs. Often it is regarded as a central course of the curriculum.
It is fascinating and instructive to trace the history of how the subject mat-
ter for this course has changed. Back in the middle 1960’s the course was
not entitled Data Structures but perhaps List Processing Languages. The
major subjects were systems such as SLIP (by J. Weizenbaum), IPL-V (by
A. Newell, C. Shaw, and H. Simon), LISP 1.5 (by J. McCarthy) and
SNOBOL (by D. Farber, R. Griswold, and 1. Polonsky). Then, in 1968,
volume I of the Art of Computer Programming by D. Knuth appeared. His
thesis was that list processing was not a magical thing that could only be
accomplished within a specially designed system. Instead, he argued that
the same techniques could be carried out in almost any language and he
shifted the emphasis to efficient algorithm design. SLIP and IPL-V faded
from the scene, while LISP and SNOBOL moved to the programming lan-
guages course. The new strategy was to explicitly construct a representation
(such as linked lists) within a set of consecutive storage locations and to
describe the algorithms by using English plus assembly language.

Progress in the study of data structures and algorithm design has con-
tinued. Out of this recent work has come many good ideas which we
believe should be presented to students of computer science. It is our pur-
pose in writing this book to emphasize those trends which we see as espe-
cially valuable and long lasting.

The most important of these new concepts is the need to distinguish
between the specification of a data structure and its realization within an
available programming language. This distinction has been mostly blurred
in previous books where the primary emphasis has either been on a pro-
gramming language or on representational techniques. OQur attempt here
has been to separate out the specification of the data structure from its
realization and to show how both of these processes can be successfully
accomplished. The specification stage requires one to concentrate on des-
cribing the functioning of the data structure without concern for its imple-
mentation. This can be done using English and mathematical notation, but
here we introduce a programming notation called axioms. The resulting
implementation independent specification is valuable in two ways: (i) to
help prove that a program which uses this data structure is correct, and (ii)

xi

xii Preface

to prove that a particular implementation of the data structure is correct.
To describe a data structure in a representation independent way one needs
a syntax. This can be seen at the end of section 1.1 where we also precisely
define the notions of data object and data structure.

This book also seeks to teach the art of analyzing algorithms but not at
the cost of undue mathematical sophistication. The value of an implemen-
tation ultimately relies on its resource utilization: time and space. This
implies that the student needs to be capable of analyzing these factors. A
great many analyses have appeared in the literature, yet from our perspec-
tive most students don’t attempt to rigorously analyze their programs. The
data structures course comes at an opportune time in their training to
advance and promote these ideas. For every algorithm that is given here we
supply a simple, yet rigorous worst case analysis of its behavior. In some
cases the average computing time is also derived.

The growth of data base systems has put a new requirement on data
structures courses, namely to cover the organization of large files. Also,
many instructors like to treat sorting and searching because of the richness
of its examples of data structures and its practical application. The choice
of our later chapters reflects this growing interest.

One especially important consideration is the choice of an algorithm des-
cription language. Such a choice is often complicated by the practical mat-
ters of student background and language availability. But today the
programming language Pascal has become pervasive as the language of
instruction in Computer Science departments. With that fact in mind we
decided to alter our book Fundamentals of Data Structures, rewriting all
of the algorithms into Pascal.

The basic audience for this book is either the computer science major
with at least one year of courses or a beginning graduate student with prior
training in a field other than computer science. This book contains more
than one semester’s worth of material and several of its chapters may be
skipped without harm. The following are two scenarios which may help in
deciding what chapters should be covered.

The first author has used this book with sophomores who have had one
semester of Pascal and one semester of assembly language. He would cover
chapters one through five skipping sections 2.2, 2.3, 3.2, 4.7, 4.11, and 5.8.
Then, in whatever time was left chapter seven on sorting was covered. The
second author has taught the material to juniors who have had one quarter
of FORTRAN or PASCAL and two quarters of introductory courses
which themselves contain a potpourri of topics. In the first quarter’s data
structure course, chapters one through three are lightly covered and chap-
ters four through six are completely covered. The second quarter starts
with chapter seven which provides an excellent survey of the techniques

Preface xiii

which were covered in the previous quarter. Then the material on external
sorting, symbol tables and files is sufficient for the remaining time. Note
that the material in chapter 2 is largely mathematical and can be skipped
without harm.

The paradigm of class presentation that we have used is to begin each
new topic with a problem, usually chosen from the computer science arena.
Once defined, a high level design of its solution is made and each data
structure is axiomatically specified. A tentative analysis is done to deter-
mine which operations are critical. Implementations of the data structures
are then given followed by an attempt at verifying that the representation
and specifications are consistent. The finished algorithm in the book is
examined followed by an argument concerning its correctness. Then an
analysis is done by determining the relevant parameters and applying some
straightforward rules to obtain the correct computing time formula.

In summary, as instructors we have tried to emphasize the following
notions to our students: (i) the ability to define at a sufficiently high level of
abstraction the data structures and algorithms that are needed; (ii) the abil-
ity to devise alternative implementations of a data structure; (iii) the ability
to synthesize a correct algorithm; and (iv) the ability to analyze the com-
puting time of the resultant program. In addition there are two underlying
currents which, though not explicitly emphasized, are covered throughout.
The first is the notion of writing nicely structured programs. For all of the
programs contained herein we have tried our best to structure them appro-
priately. We hope that by reading programs with good style the students
will pick up good writing habits. A nudge on the instructor’s part will also
prove useful. The second current is the choice of examples. We have tried
to use those examples which prove a point well, have application to com-
puter programming, and exhibit some of the brightest accomplishments in
computer science.

At the close of each chapter there is a list of references and selected
readings. These are not meant to be exhaustive. They are a subset of those
books and papers that we found to be the most useful. Otherwise, they are
either historically significant or develop the material in the text somewhat
further.

Many people have contributed their time and energy to improve our
original book Fundamentals of Data Structures and we would like to
thank them here again. We wish to thank Arvind [sic}, T. Gonzalez, L.
Landweber, J. Mistra, and D. Wilczynski, who used the book in their own
classes and gave us detailed reactions. Thanks are also due to A. Agrawal,
M. Cohen, A. Howells, R. Istre, D. Ledbetter, D. Musser and to our stu-
dents in CS 202, CSci 5121 and 5122 who provided many insights. For
administrative and secretarial help we thank M. Eul, G. Lum, J. Matheson,

xiv Preface

S. Moody, K. Pendleton, and L. Templet. To the referees for their pungent

yet favorable comments we thank S. Gerhart, T. Standish, and J. Ullman.

Finally, we would like to thank our institutions, the University of Southern

California and the University of Minnesota, for encouraging in every way
our efforts to produce this book.

Ellis Horowitz

Sartaj Sahni

June 1983

vili

Contents

CHAPTER 5 TREES

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

5.9

Basic Terminologyccvviiiiiiiiiiiiiiirrinninnnnns 203
Binary Treesciviiiiiiineinrennnnneareeneenennns 206
Binary Tree Representationsciveviivveerenenensn 210
Binary Tree Traversalcccviiiiiiinininnnennnnnnnn. 213
More on Binary Treesccovviiiiiniirininennnnnnnens 220
Threaded Binary Treesovviterrnneeennnnerennnnennns. 226
Binary Tree Representation of Treesccccuuu... 230
Applications of Treescciiiiiiiiiiiinnnnnnnn. 236
5.8.1 Set Representationc.covvveiiiienrernnnnnnnnsn 236
5.82 Decision Treescovevevruerenuneennineneennns, 242
583 Game Treesovuniiiienieniiiiiiiiennaanannns 248
Counting Binary Treescceeeiiiiiiiiiiireeeeinnnnnns 258
References and Selected Readingscccouun.. 264
EXercises ...t e 265

CHAPTER 6 GRAPHS

6.1 Terminology and Representationscouvuvun.... 272
6.1.1 Introductionc.ccoviiiiiiiiinniiiinnnnnnnnns 272
6.1.2 Definitions and Terminology...............ccvuunn... 273
6.1.3 Graph Representationsccovuvinnevnnn.n. 277

6.2 Traversals, Connected Components and Spanning Trees...... 283

6.3 Shortest Paths and Transitive Closure 292

6.4 Activity Networks, Topological Sort and Critical Paths...... 301

6.5 Enumerating All Paths0iiiiiiiiiiennnnnnnns 316
References and Selected Readingsccccvvnunn... 319
EXercisesvviuenninniiiii i iiieinneea.... 319

CHAPTER 7 INTERNAL SORTING

Tl Searchingc.oeiiniiin it e, 326

7.2 InSertion SOTtv'einiiii it i, 335

7.3 QUICKSOIt Lottt i e 338

7.4 How Fast Can We Sort?ciiiiiniinnnnnnnn. 341

7.5 2-Way Merge Sort......oiiueiini it tiiie e eainrnnnns 343

7.6 Heap Sortoiiiiiiiiii i e 349

7.7 Sorting on Several Keyscoiiiiiiiiiiiiiiinnnnn. 352

7.8 Practical Considerations for Internal Sorting 356
References and Selected Readingsc.coouun.n. 371
EXerCISeS o .ottt et i e e e 372

CHAPTER 8 EXTERNAL SORTING

8.1 Storage Devicesc.iiiiiiiiiiiiiiiiii i, 376

8.1.L1 Magnetic Tapescuveiiinrnnrrennenneennnnns 376

T R

s

Chapter 1

INTRODUCTION

1.1 OVERVIEW

The field of computer science is so new that one feels obliged to furnish a
definition before proceeding with this book. One often quoted definition
views computer science as the study of algorithms. This study encompasses
four distinct areas:

(i) machines for executing algorithms—this area includes everything
from the smallest pocket calculator to the largest general purpose digital
computer. The goal is to study various forms of machine fabrication and
organization so that algorithms can be effectively carried out.

(i1) languages for describing algorithms—these languages can be placed
on a continuum. At one end are the languages which are closest to the
physical machine and at the other end are languages designed for sophisti-
cated problem solving. One often distinguishes between two phases of this
area: language design and translation. The first calls for methods for speci-
fying the syntax and semantics of a language. The second requires a means
for translation into a more basic set of commands.

(iii) foundations of algorithms—here people ask and try to answer such
questions as: is a particular task accomplishable by a computing device; or
what is the minimum number of operations necessary for any algorithm
which performs a certain function? Abstract models of computers are
devised so that these properties can be studied.

(iv) analysis of algorithms—whenever an algorithm can be specified it
makes sense to wonder about its behavior. This was realized as far back as
1830 by Charles Babbage, the father of computers. An algorithm’s behavior
pattern or performance profile is measured in terms of the computing time
and space that are consumed while the algorithm is processing. Questions
such as the worst and average time and how often they occur are typical.

We see that in this definition of computer science, “algorithm” is a fun-
damental notion. Thus it deserves a precise definition. The dictionary’s

2 Introduction

definition, “any mechanical or recursive computational procedure,” is not
entirely satisfying since these terms are not basic enough.

Definition: An algorithm is a finite set of instructions which, if followed,
accomplish a particular task. In addition every algorithm must satisfy the
following criteria:
(i) input: there are zero or more quantities which are externally
supplied;
(ii) outpur: at least one quantity is produced,
(iii) definiteness: each instruction must be clear and unambiguous;
(iv) finiteness: if we trace out the instructions of an algorithm, then for
all cases the algorithm will terminate after a finite number of steps;
(V) effectiveness: every instruction must be sufficiently basic that it can
in principle be carried out by a person using only pencil and paper.
It is not enough that each operation be definite as in (iii), but it
must also be feasible.

In formal computer science, one distinguishes between an algorithm, and
a program. A program does not necessarily satisfy condition (iv). One
important example of such a program for a computer is its operating sys-
tem which never terminates (except for system crashes) but continues in a
wait loop until more jobs are entered. In this book we will deal strictly with
programs that always terminate. Hence, we will use these terms inter-
changeably.

An algorithm can be described in many ways. A natural language such as
English can be used but we must be very careful that the resulting instruc-
tions are definite (condition iii). An improvement over English is to couple
its use with a graphical form of notation such as flowcharts. This form
places each processing step in a “box™ and uses arrows to indicate the next
step. Different shaped boxes stand for different kinds of operations. All
this can be seen in figure 1.1 where a flowchart is given for obtaining a
Coca-Cola from a vending machine. The point is that algorithms can be
devised for many common activities.

Have you studied the flowchart? Then you probably have realized that it
isn’t an algorithm at all! Which properties does it lack?

Returning to our earlier definition of computer science, we find it
extremely unsatisfying as it gives us no insight as to why the computer is
revolutionizing our society nor why it has made us re-examine certain basic
assumptions about our own role in the universe. While this may be an
unrealistic demand on a definition even from a technical point of view it is
unsatisfying. The definition places great emphasis on the concept of algo-

Overview

COKES
AVAIBABLE

SEARCH POCKETS
FOR CHANGE

PRESS
COIN
RELEASE

IS A
FRIEND WITH
CORRECT CHANGE
VIS&BLE

BORROW
THE CORRECT
CHANGE

ENTER COINS

PRESS BUTTON
AND

KICK MACHINE)

Figure 1.1 Flowchart for obtaining a Coca-Cola.

3

4 Introduction

rithm, but never mentions the word “data”. If a computer is merely a
means to an end, then the means may be an algorithm but the end is the
transformation of data. That is why we often hear a computer referred to
as a data processing machine. Raw data is input and algorithms are used to
transform it into refined data. So, instead of saying that computer science
is the study of algorithms, alternatively, we might say that computer
science is the study of data:

(i) machines that hold data;

(i) languages for describing data manipulation;

(ili) foundations which describe what kinds of refined data can be pro-

duced from raw data;

(iv) structures for representing data.

There is an intimate connection between the structuring of data, and the
synthesis of algorithms. In fact, a data structure and an algorithm should
be though of as a unit, neither one making sense without the other. For
instance, suppose we have a list of n pairs of names and phone numbers
(@, bi)az, b2), ..., (an, bs), and we want to write a program which when
given any name, prints that person’s phone number. This task is called
searching. Just how we would write such an algorithm critically depends
upon how the names and phone numbers are stored or structured. One
algorithm might just forge ahead and examine names, ai, a2, a3, ... etc.,
until the correct name was found. This might be fine in Oshkosh, but in
Los Angeles, with hundreds of thousands of names, it would not be practi-
cal. If, however, we knew that the data was structured so that the names
were in alphabetical order, then we could do much better. We could make
up a second list which told us for each letter in the alphabet, where the first
name with that letter appeared. For a name beginning with, say, S, we
would avoid having to look at names beginning with other letters. So
because of this new structure, a very different algorithm is possible. Other
ideas for algorithms become possible when we realize that we can organize
the data as we wish. We will discuss many more searching strategies in
Chapters 7 and 9.

Therefore, computer science can be defined as the study of data, its rep-
resentation and transformation by a digital computer. The goal of this
book is to explore many different kinds of data objects. For each object,
we consider the class of operations to be performed and then the way to
represent this object so that these operations may be efficiently carried out.
This implies a mastery of two techniques: the ability to devise alternative
forms of data representation, and the ability to analyze the algorithm
which operates on that structure. The pedagogical style we have chosen is
to consider problems which have arisen often in computer applications.
For each problem we will specify the data object or objects and what is to
be accomplished. After we have decided upon a representation of the

Overview 5

objects, we will give a complete algorithm and analyze its computing time.
After reading through several of these examples you should be confident
enough to try one on your own.

There are several terms we need to define carefully before we proceed.
These include data structure, data object, data type and data representa-
tion. These four terms have no standard meaning in computer science cir-
cles, and they are often used interchangeably.

A data type is a term which refers to the kinds of data that variables may
“hold” in a programming langunage. In FORTRAN the data types are
INTEGER, REAL, LOGICAL, COMPLEX, and DOUBLE PRECISION.
In PL/I there is the data type CHARACTER. The fundamental data type
of SNOBOL is the character string and in LISP it is the list (or S-
expression). Some of the standard data types in Pascal are: integer, real,
boolean, char, and array. With every programming language there is a set
of built-in data types. This means that the language allows variables to
name data of that type and provides a set of operations which meaningfully
manipulates these variables. Some data types are easy to provide because
they are already built into the computer’s machine language instruction set.
Integer and real arithmetic are examples of this. Other data types require
considerably more effort to implement. In some languages, there are fea-
tures which allow one to construct combinations of the built-in types. In
COBOL and PL/I this feature is called a STRUCTURE while in PASCAL
it is called a RECORD. However, it is not necessary to have such a
mechanism.

Data object is a term referring to a set of elements, say D. For example
the data object integers refers to D = {0, £1, £2, ...}. The data object
alphabetic character strings of length less than thirty one implies D =
{"A'/B,.../Z'/AA’, ...}. Thus, D may be finite or infinite and if D is
very large we may need to devise special ways of representing its elements
in our computer.

The notion of a data structure as distinguished from a data object is that
we want to describe not only the set of objects, but the way they are
related. Saying this another way, we want to describe the set of operations
which may legally be applied to elements of the data object. This implies
that we must specify the set of operations and show how they work. For
integers we would have the arithmetic operations +, —, *, / and perhaps
many others such as mod, ceil, floor, greater than, less than, etc. The data
object integers plus a description of how +, —, *, /, etc. behave constitutes
a data structure definition.

To be more precise let’s examine a modest example. Suppose we want to
define the data structure natural number (abbreviated natno) where natno
= {0,1,2,3,...} with the three operations being a test for zero, addition and
equality. The following notation can be used:

6 Introduction

structure NATNO

1 declare ZERO() — natno

2 ISZERO(natno) — boolean

3 SUCC(natno) — natno

4 ADD(natno, natno) — natno

5 EQ(natno, natno) — boolean

6 for all x, y € natno let

7 ISZERO(ZERO) ::= true; ISZERO(SUCC(x)) ::= false

8 ADD(ZERO, y) = y, ADD(SUCC(x), y) ==
SUCC(ADD(x, y))

9 EQ(x, ZERO) ::= if ISZERO(x) then true else false

10 EQ(ZERO, SUCC(y)) = false

11 EQ(SUCC(x), SUCC(y)) == EQ(x, p)

12 end

13 end NATNO

In the declare statement five functions are defined by giving their names,
inputs and outputs. ZERO is a constant function which means it takes no
input arguments and its result is the natural number zero, written as
ZERO. ISZERO is a boolean function whose result is either true or false.
SUCC stands for successor. Using ZERO and SUCC we can define all of
the natural numbers as: ZERO, 1 = SUCC(ZERO), 2 = SUCC(SUCC-
(ZERO)), 3 = SUCC(SUCC(SUCC(ZEROQ))), ... etc. The rules on line 8
tell us exactly how the addition operation works. For example if we wanted
to add two and three we would get the following sequence of expressions:

ADD(SUCC(SUCC(ZERO)),SUCC(SUCC(SUCC(ZERO))))
which, by line 8 equals

SUCC(ADD(SUCC(ZERO),SUCC(SUCC(SUCC(ZERO)))))
which, by line 8 equals

SUCC(SUCC(ADD(ZERO),SUCC(SUCC(SUCC(ZERO))))))
which, by line 8 equals

SUCC(SUCC(SUCC(SUCC(SUCC(ZERO)))

Of course, this is not the way to implement addition. In practice we use bit
strings which is a data structure that is usually provided on our computers.

But however the ADD operation is implemented, it must obey these rules.
Hopefully, this motivates the following definition.

Definition: A data structure is a set of domains &/, a designated domain
de, a set of functions .7 and a set of axioms .. The triple (Z,.#,.%/)
denotes the data structure d and it will usually be abbreviated by writing d.

How to Create Programs 7

In the previous example

d = natno, /' = {natno, boolean}
.# = {ZERO,ISZERO,SUCC,ADD}
./ = {lines 7 thru 10 of the structure NATNO}

The set of axioms describes the semantics of the operations. The form in
which we choose to write the axioms is important. Our goal here is to write
the axioms in a representation independent way. Then, we discuss ways of
implementing the functions using a conventional programming language.

An implementation of a data structure d is a mapping from d to a set of
other data structures e. This mapping specifies how every object of d is to
be represented by the objects of e. Secondly, it requires that every function
of d must be written using the functions of the implementing data struc-
tures e. Thus we say that integers are represented by bit strings, boolean is
represented by zero and one, an array is represented by a set of consecutive
words in memory.

In current parlance the triple (&/, .#,./) is referred to as an abstract
data type. It is called abstract precisely because the axioms do not imply a
form of representation. Another way of viewing the implementation of a
data structure is that it is the process of refining an abstract data type until
all of the operations are expressible in terms of directly executable func-
tions. But at the first stage a data structure should be designed so that we
know what it does, but not necessarily how it will do it. This division of
tasks, called specification and implementation, is useful because it helps to
control the complexity of the entire process.

1.2 HOW TO CREATE PROGRAMS

Now that you have moved beyond the first course in computer science, you
should be capable of developing your programs using something better
than the seat-of-the-pants method. This method uses the philosophy: write
something down and then try to get it working. Surprisingly, this method is
in wide use today, with the result that an average programmer on an aver-
age job turns out only between five to ten lines of correct code per day. We
hope your productivity will be greater. But to improve requires that you
apply some discipline to the process of creating programs. To understand
this process better, we consider it as broken up into five phases: require-
ments, design, analysis, coding, and verification.

(i) Requirements. Make sure you understand the information you are
given (the input) and what results you are to produce (the output). Try to
write down a rigorous description of the input and output which covers all
cases.

8 Introduction

You are now ready to proceed to the design phase. Designing an algorithm
is a task which can be done independently of the programming language
you eventually plan to use. In fact, this is desirable because it means you
can postpone questions concerning how to represent your data and what a
particular statement looks like and concentrate on the order of processing.

(i1) Design. You may have several data objects (such as a maze, a poly-
nomial, or a list of names). For each object there will be some basic opera-
tions to perform on it (such as print the maze, add two polynomials, or
find a name in the list). Assume that these operations already exist in the
form of procedures and write an algorithm which solves the problem
according to the requirements. Use a notation which is natural to the way
you wish to describe the order of processing.

(iii) Analysis. Can you think of another algorithm? If so, write it down.
Next, try to compare these two methods. It may already be possible to tell
if one will be more desirable than the other. If you can’t distinguish
between the two, choose one to work on for now and we will return to the
second version later.

(iv) Refinement and coding. You must now choose representations for
your data objects (a maze as a two dimensional array of zeros and ones, a
polynomial as a one dimensional array of degree and coefficients, a list of
names possibly as an array) and write algorithms for each of the operations
on these objects. The order in which you do this may be crucial, because
once you choose a representation, the resulting algorithms may be ineffi-
cient. Modern pedagogy suggests that all processing which is independent
of the data representation be written out first. By postponing the choice of
how the data is stored we can try to isolate what operations depend upon
the choice of data representation. You should consider alternatives, note
them down and review them later. Finally you produce a complete version
of your first program.

It is often at this point that one realizes that a much better program
could have been built. Perhaps you should have chosen the second design
alternative or perhaps you have spoken to a friend who has done it better.
This happens to industrial programmers as well. If you have been careful
about keeping track of your previous work it may not be too difficult to
make changes. One of the criteria of a good design is that it can absorb
changes relatively easily. It is usually hard to decide whether to sacrifice
this first attempt and begin again or just continue to get the first version
working. Different situations call for different decisions, but we suggest
you eliminate the idea of working on both at the same time. If you do
decide to scrap your work and begin again, you can take comfort in the
fact that it will probably be easier the second time. In fact you may save as
much debugging time later on by doing a new version now. This is a phe-
nomenon which has been observed in practice.

