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Preface

Hardness must surely be one of the properties of materials first
subjected by man to careful intercomparison and semiquantitative
appraisal. Even before the age of metals and ceramics, men were
choosing soapstone for fashioning utensils and ornaments because
its softness made it readily cut and flint for knives, tools and weapons
because its hardness meant strength and ability to retain an edge.
Exercise of such choices from naturally occurring materials whose
color, density and other more obvious attributes were frequently very
similar implies a conscious testing of hardness by scratching, nicking
or other means. Yet, tens of thousands of years elapsed before serious
attempts were made to develop a scale of hardness values. One of
the first such was recorded by Reaumur in his 1722 memoir, where
he described the scratching of metals by a series of minerals, thus
anticipating Mohs by nearly a century.

Today, despite a proliferation of highly sophisticated techniques
for measuring the mechanical properties of materials, hardness tests
are used more widely than ever. Why should this be? It is simply
that the attractions of the test to neolithic man—simplicity, conve-
nience, nondestructiveness, and direct correlation with service per-
formance—are no less pertinent to his descendant living in today’s
space age. And there are other reasons why the hardness test retains
its place in the materials scientist’s armamentarium. Hardness tests
are readily adaptable to testing under special conditions of tempera-
ture, pressure and chemical environment. Moreover, the possibilities
of greatly reducing the scale of the test open up many opportunities
of using (in Gilman’s words) hardness as a strength microprobe. It
may be applied to small samples, it can assess chemical and structural
heterogeneities such as diffusion gradients, precipitates, eutectics,
dendrites and grain boundaries, and it can readily explore the influence
of fields, radiation or environment on mechanical behavior of surfaces.

Notwithstanding these attractions and about 300 years of continued
scientific interest in the property and technique, hardness is still

poorly understood. This is so because it is not a single property but ,f

rather a whole complex of mechanical properties and at the same”
time a measure of the intrinsic bonding of the material. For.the

. -
Nond v v
N -\.\}‘}" Lo

~ S :

o
S



vi SCIENCE OF HARDNESS TESTING

foregoing reasons, hardness measurements continue to be widely used
in both technological and scientific work and the variety and sophis-
tication of the problems to which they are applied grow daily.
Recognizing this, the editors organized a group of papers for presenta-
tion at the 1971 Materials Engineering Congress in Detroit. The papers
presented there were extended in their written form, and supplemented
by discussion and a few short contributions that for various reasons
were not available in Detroit, to constitute the present volume.

The last previous volume published by ASM treating the subject
of hardness was Williams’ monograph that appeared in 1942 and
contained nearly 2000 references to the prior literature. Since that
time, a number of other treatises on hardness have been published
elsewhere, among the more notable of these being Tabor (1951), Mott
(1956), Biickle’s thesis (1960), and Glazov and Vigdorovich (1971).
Each of the latter has its own particular slant and appeal but none
makes a serious attempt to review the whole of the literature.
Recognizing the current resurgence of interest in hardness properties
and techniques by the scientific community, the editors determined
that a comprehensive review and assessment of progress in under-
standing of the hardness test and of its research applications was
in order. It was decided to supplement a broad coverage of this field
in a series of eight reviews with a selection of some current research
papers. This book, resulting from that plan, contains contributions
from France, West Germany, Canada, Australia, the United Kingdom,
and the USSR as well as from our own country, properly reflecting
the earlier and more intensive interest ifi the technique abroad than
here. Almost 1000 literature references appear.

The book presents many new and interesting results, only a few
of which can be singled out for special mention. Weiler demonstrates
the futility of the hope for a complete and accurate intraconvertibility
of hardness scales by his extensive data sets derived from several
different testing techniques. Boklen shows that it is possible to measure
ductility from cone indentation tests—a possible boon when the
necessity is at hand for determining this parameter for a number
of small or broken pieces. Several authors report on the indentation
deformation of very hard materials, including diamond, and are able
to adduce evidence that this is indeed true plastic flow. Gilman, by
experiment and calculation, calls attention to the very real possibility
of crystallographic transformation under the very high pressures
produced under a loaded indenter. He also proposes a reasonable
explanation for the anomalous hardness/yield-strength ratio of the
NaCl-structure compounds as contrasted toc the face-centered-cubie
metals, reported by Westbrook fifteen years ago. Atkins shows that
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both changes in operative slip systems with temperature and deviations
from stoichiometry significantly affect the temperature dependence
of hardness of several technologically important materials. A group
of six papers presents the improvements in our ability to assess, from
hardness measurements, the anisotropic behavior of materials that
have been achieved since the classic paper of Daniels and Dunn in
1949. Finally, new data on both room- and elevated-temperature -
hardness are given for cubic boron nitride, the only close rival to
diamond in hardness, and generally its superior in terms of chemical
reactivity. The microhardness of zinc is found by Latanision to be
dependent on applied potential.

Review of the contents of the book makes it clear that there are
many questions posed by results reported or reviewed here that will
require further research for their elucidation. Gane’s famous experi-
ment with an ultra-microindenter in the electron microscope has no
accepted explanation. Is it a matter of contaminant film lubrication,
siting between pre-existent defects in the sample, or the small size
of the dislocation loops generated that gives rise to the high apparent-
hardness values? Certain materials, for example hafnium carbide,
quartz, orthoclase and cubic boron nitride, appear to fall anomalously
on empirical plots of hardness vs energy per unit volume or of hardness
vs bulk modulus. Is this because of poor hardness data, poor energy
or modulus data, or because the attempted correlation is itself too
simplistic? Indentation creep has been known for some time in metals
at high temperatures, or for light loads and active environments,
in nonmetals at low temperatures. Chen and Hendrickson show in-
dentation creep in silver at low temperatures and light loads for
which there is yet no complete explanation, and Walker finds opposite
effects for polar solvents at high loads relative to low loads. Photome-
chanical and electromechanical effects have been observed, especially
in semi-conductors, by many different investigators. No satisfactory
model has yet emerged, nor has an explanation as to why some workers
have difficulty in reproducing the phenomena. Grain-boundary and
surface hardening have been observed in a wide variety of materials
and have been shown to be associated with solute and vacancy
gradients. Yet, a detailed model of how such marked changes in
hardness can arise still eludes us. Similarly, environmental effects
on surface hardness are almost certainly due to an enforced redis-
tribution of charge carriers in the near-surface region, but detailed
models to account for the similar effects in structurally dissimilar
glasses and crystals are still lacking.

It is to be hoped that readers will find this book a conveniept/
summary and guide to the literature, as well as a stimulant to-the
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viii SCIENCE OF HARDNESS TESTING

investigation of the material behaviors fundamental to the hardness
test itself and of the many fascinating scientific problems to which
it may be applied.

The editors wish to thank the individual authors for their cooperation
and forebearance during the long gestation of this volume and their
secretaries, Mrs. LaVerne Phan and Mrs. Sharon New, for help in
many, many ways in seeing the project through to completion, and
to acknowledge the assistance of the late Dr. Taylor Lyman and
Mrs. Helen Waldorf of the ASM staff during publication.

Schenectady, N.Y. J. H. WesTBroOK and H. CONRAD
Louisville, Ky. Symposium Coordinators and Editors
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Section 1. Fundamental Basis of the
Hardness Test

Chapter 1
The Fundamental Basis of the Hardness Test
M. C. SHaw

Hardness is a term having a different meaning to different people.
It is resistance to penetration to a metallurgist, resistance to wear
to a lubrication engineer, a measure of flow stress to a design engineer,
resistance to scratching to a mineralogist, and resistance to cutting
to a machinist. While these several actions appear to differ greatly

in character, they are all related to the plastic flow stress of the
material (Y).

The wide variety of hardness test procedures that have been used
may be classified as follows:

1 Static indentation tests, in which a ball, cone or pyramid is forced into a surface
and the load per unit area of impression is taken as the measure of hardness. The
Brinell, Vickers, Rockwell, Monotron and Knoop tests are of this type.

2 Scratch tests, in which we merely observed whether one material is capable
of scratching another. The Mohs and file hardness tests are of this type.

3 Plowing tests, in which a blunt element (usually diamond) is moved across
a surface under controlled conditions of load and geometry and the width of the groove
is the measure of hardness. The Bierbaum test is of this type.

4 Rebound tests, in which an object of standard mass and dimensions is bounced
from the test surface and the height of rebound is taken as the measure of hardness.
The Shore Scleroscope is an instrument of this type.

5 Damping tests, in which the change in amplitude of a pendulum having a
hard pivot resting on the test surface is the measure of hardness. The Herbert pendulum
test is of this type.

6 Cutting tests, in which a sharp tool of given geometry is caused to remove
a chip of standard dimensions.

7 Abrasion tests, in which a specimen is loaded against a rotating disk and the
rate of wear is taken as a measure of hardness.

8 Frosion tests, in which sand or abrasive grain is caused to impinge upon the
test surface under standard conditions and loss of material in a given time is taken
as the measure of hardness. Hardness of grinding wheels is measured thus.

The author is at the Carnegie-Mellon University, Pittsburgh, Pa. <
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2 SCIENCE OF HARDNESS TESTING

The equipment and detailed test conditions for most of the hardness
tests in use today may be found in references 1 to 4. In this paper
some fundamental aspects of the static indentation hardness test are
considered.

When a cylindrical specimen having a length-to-diameter ratio of
about two is loaded between flat, parallel surfaces (Fig. 1a), the mean
stress at which the specimen becomes fully plastic is referred to as

(v 0¥
—» By
fw
{a) {b)

Fig. 1. Comparison of (a) uniaxial compression test
and (b) Brinell hardness test.

Y 1725%
L ~A=

Fig. 2. (a) Vickers and (b) Knoop hardness indenters.

the uniaxial flow stress (Y). If a sphere is pressed into an extensive
flat surface until a plastic dent is produced (Fig. 1b), the mean stress
on the dent is found to be about 3Y and this mean stress is referred
to as hardness. '

In the Brinell test (5), the area used to compute the mean stress
1s the contact area (A_) rather than the area in the plane of the
surface (A) and the Brinell hardness is

W 2W »
" A, «D[D-VDE-ad%]

c

where W is the maximum applied load, D is the diameter of the
sphere, and d is the diameter of the dent measured in the plane

of the original surface. >

To obtain representative values of hardness, it is important that:

*®
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BASIS OF HARDNESS TEST 3

1 The load be adjusted so that d/D is between 0.3 and 0.5.

2 The load be maintained for at least 30 sec.

3 The hardness of the indenter be at least 2-1/2 times the hardness of the
specimen.

4 The specimen extend several times the diameter of the impression (d) below
and to the sides of the indentation.

The Meyer (6) hardness (H,,) is based upon the area projected
into the plane of the surface (A) and hence is a simpler concept.

H —E—‘iw T (2)
M™ A ;d?

Smith and Sandland (7) proposed that a pyramid be substituted
for a ball in order to provide geometrical similitude under different
values of load (Fig. 2a). The apex of their indenter was 136° since
this is the angle subtended by the tangents of a sphere when d/D
= 0.375. The Vickers hardness (H,) is obtained by dividing the load
by the contact area (A).

= 3
136 ®
¢ d? sm( )
2

where d, is the mean diagonal length of impression at the surface.

The Knoop (8) hardness indenter has the geometry shown in Fig.
2(b) and provides a diagonal impression that is seven times as long
in one direction as in the other direction. This indenter is more blunt
than the Vickers and hence gives a shallower impression, a charac-
teristic of importance in the microhardness testing of brittle materials
or thin specimens. Unlike Brinell and Vickers hardnesses, the Knoop
hardness is expressed in terms of the projected area, rather than
the contact area of the indentation:

w 2w
A

w 02WwW
Hv:_'_
A

= (4)
2( 172.5 130)
d*{cot + tan—
2 2

where d is the length of the long diagonal.

The hardness values obtained by any of these methods may be
expressed as CY, where C is termed the constraint factor and Y
is the uniaxial flow stress. The constraint factor C depends upon
the geometry of the indenter, and other items to be mentioned later, e
but is approximately three for all of the indenters considered, sm(;e

H, =

+
N
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Fig. 3. Slip-line field solutions for a flat two-dimensional punch
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Fig. 4. Slip-line field solution for an axisymmetric flat punch due to Shield (‘11).



