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Preface

The engineer of the present day is faced with solving structural and other
problems of growing complexity. Classical mathematics, despite its ever-
increasing sophistication, is capable of solving only severely idealized
situations while placing at the same time a heavy burden on his skilled
time, which could more usefully be employed in the process of design.
Fortunately, the rapid development of digital computers, with a pro-
gressively greater capacity and a decreasing cost of performing arithmetical
operations, has come to his rescue, allowing the use of relatively simple
numerical formulations and revolutionizing his approach to the process
of analysis.

It is now often no more expensive to perform a more accurate analysis
instead of producing approximate calculations of doubtful validity. With
the aid of such methods as the one described in this book, solution of
previously intractable problems has become possible. Expensive experi-
mental models now often used in the design of important structures are
rapidly becoming displaced by more economic computation.

With this progress in the field of analysis, automatic optimization of
component design is rapidly becoming a reality. On the other hand, such
new devices as a computer ‘sketch pad’, by which the designer can inter-
act with the machine, are being developed. Both will allow the future
engineer to make the best use of his creative and scientific talents.

Before numerical, computer-based solutions of real problems dealing
with complex continua can be solved, it is necessary to limit their infinite
degrees of freedom to a finite, if large, number. of unknowns. Such a
process of discretization was first successfully performed by the now well-
known method of finite differences.

Now an alternative approach, that of the finite elements, appears to
offer considerable advantages and its relatively simple logic makes it
ideally suited for the computer. Many papers illustrating the application
of this process have been published, but it is felt that a fairly comprehensive,
simple presentation is called for to make the procedures more widely

understood. This is being attempted in the present volume.
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viii THE FINITE ELEMENT METHOD

The finite element method was developed originally as a concept of
structural analysis, and the major part of the applications which will be
illustrated belong to this field. However, the wider basis of the method
will be stressed with applicability to such diverse problems as that of heat
conduction, fluid flow, etc.

Although the book is primarily intended for the engineering profession
it is hoped that it may be of interest to mathematicians, who may some
day develop a calculus of finite elements in parallel with that of finite
difference calculus. Because of this emphasis, mathematical demands made
of the reader will not be exacting. An elementary knowledge of differential
calculus coupled with some rudiments of matrix algebra are the basic
requirements. For uninitiated readers a brief summary of the principles
of matrix algebra is included in the Appendix.

The first chapter of the book has relatively little to do with ‘finite
elements’. It summarizes the basic principles of stiffness analysis of
structures in a simple way so that reference to other structural textbooks
is superfluous. It is a characteristic of the finite element process, whether
used in a structural context or to describe other phenomena, that the
standard procedures of structural assembly can always be followed.

Chapter 2 describes the essentials of the finite element formulation of
elastic problems based on assumed displacement patterns. A careful study
of this chapter lays the foundations of the method which, in Chapters 3 to
9, is applied to a variety of elasticity problems. It is important to note
here two things. First, that the method is a general one based on an
approximate solution of an extremum problem. Second, that, contrary to
the well-known Ritz process, quantities with obvious physical meaning are
chosen as the variable parameters.

The first fact permits an immediate extension to non-structural prob-
lems—some of which are dealt with in Chapter 10. The second allows the
engificer to maintain at all times a direct physical ‘contact’ with the real
problem being examined.

Obviously, the finite element method, because of its tremendous utility,
is in rapid process of evolution. No book of this type can, therefore,
hope to be complete. Although Chapter 14 is intended to throw light on
some possible future developments, it is nevertheless hoped that as a text
this work will remain of some permanent value, outlining the basic
principles as well as some immediate applications.

Since simplicity of presentation has been the guiding motif in writing
this text, it should also appeal to the beginner as well as the more experi-
enced practitioner of the art, whose interest may be in the discussion of
such topics as the use of numerical versus closed form integration and
reference to other technical details. For the beginner, some indication of
the preparation of a typical computer program is given in Chapter 15.
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Here some knowledge of Fortran computer language will be useful, but
clearly, since this is a rapidly developing field, the reader will need to keep
abreast of new programming techniques.

As the engineer will be a primary user of the text, practical examples
have been included whenever possible. The great majority of these
refer to civil engineering problems with which the authors have been
associated. Clearly, applications in all other branches of engineering can
equally be envisaged—the major use of the methodology being in the
field of ‘aero-space’ engineering.
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1. Structural Stiffness Analysis

1.1 Introduction

Convenrional engineering structures can be visualized as an assemblage
of structural elements interconnected at a discrete number of nodal
points. If the force-displacement relationships for the individual elements
are known it is possible, by using various well-known techniques of
structural analysis,’ 2 to derive the properties and study the behaviour
of the assembled structure.

In an elastic continuum the true number of interconnection points is
infinite, and here lies the biggest difficulty of its numerical solution. The
concept of finite elements, as originally introduced by Turner et al.,®
attempts to overcome this difficulty by assuming the real continuum to
be divided into elements interconnected only at a finite number of nodal
points at which some fictitious forces, representative of the distributed
stresses actually acting on the element boundaries, were supposed to be
introduced. If such an idealization is permissible the problem reduces
to that of a conventional structural type well amenable to numerical
treatment.

At first glance the procedure, though intuitively appealing to a structural
engineer, does not seem entirely convincing—in particular, leaving open »
the question of the load-displacement characteristics of the element. The
problems of a consistent way of determination of these characteristics
will be discussed in detail in Chapter 2, when a firm foundation for the
method will be established. At this stage, however, it is important to
recapitulate a general method of structural analysis which will be used
throughout this book once the properties of the elements have been
established.

The finite element method will be shown to apply to many problems
of non-structural type. The essential properties of an element will even
then be of the form encountered in structural analysis. Again, the general
procedures of assembly and solution will follow a pattern for which the
structural analogy provides a convenient basis.

B ) 1



2 THE FINITE ELEMENT METHOD

1.2 The Structural Element

Let Fig. 1.1 represent a two-dimensional structure assembled from
individual components and interconnected at the nodes numbered 1 to
n. The joints at the nodes, in this case, are pinned so that moments cannot
be transmitted.

X
A typical element (a)

Fig. 1.1 A typical structure built up from interconnected elements

As a starting point it shall be assumed that by separate calculation, or
for that matter from the results of an experiment, the characteristics of
each element are precisely known. Thus, if a typical element labelled (a)
and associated with nodes 1,2,3 is examined, the forces acting at the nodes
are uniquely defined by the displacements of these nodes, the distributed
loading acting on the element (p), and its initial strain. The last may be
due to temperature, shrinkage, or simply an initial ‘lack of fit’. The forces
and the corresponding displacements are defined by appropriate com-
ponents (U, V and u, v) in a common co-ordinate system.

Listing the forces acting on all the nodes (three in the case illustrated)
of the element (a) as a matrix.we have

U,
| £
F, 1
{F}e= {?} = ;({v: (1.1)
38 Us‘

Vs



STRUCTURAL STIFFNESS ANALYSIS 3
and for the corresponding nodal displacements as

141

8
{8)e= {8} ={ 2 }. (1.2)
Vg
O X
Vg
Assuming elastic behaviour of the element, the characteristic relationship
will always be of the form -

{Fle =k} +{F}*,+{F} (1:3)
in which {F}e,, represents the nodal forces required to balance any dis-
tributed loads acting on the element, and {F}*,, the nodal forces required
to balance any initial strains such as may be caused by temperature change
if the nodes are not subject to any displacement. The first of the terms
represents the forces induced by displacement of the nodes.

Similarly, the preliminary analysis or experiment will permit a unique
definition of stresses or internal reactions at any specified point or points
of the element in terms of the nodal displacements. Defining such stresses
by a matrix {o}* a relationship of the form

() = ISP} + o}t (o) )

is obtained in which the last two terms are simply the stresses due to the
distributed element loads or initial stresses respectively when no nodal
displacement occurs.

The matrix [k]® is known as the element stiffness matrix and the matrix *
[S]° as the element stress matrix. if

Relationships Eqgs (1.3) and (1.4) have been illustrated on an example
of an element with three nodes and with the interconnection points
capable of transmitting only two components of force. Clearly, the same
arguments and definitions will apply generally. An element (b) of the
hypothetical structure will possess only two points of interconnection,
others may have quite a large number of such points. Similarly, if the
joins were considered as rigid, three components of generalized force and
of generalized displacement would have to be considered, the last corre-
sponding to a moment and a rotation respectively. For a rigidly jointed,
three-dimensional structure the number of individual nodal components
would be six. Quite generally therefore—

F‘ 3¢
{Fle={: }and {8}>={: (1.5)
Fa Sm



4 THE FINITE ELEMENT METHOD

with each F; and 8, possessing the same number of components or degrees

of freedom.
The stiffness matrices of the element will clearly always be square and

of the form
ki ki Kim
kl*={: : : (1.6)

km{ km: kmm

in which ky,, etc., are submatrices which are again square and of the size
I x I, where [/ is the number of force components to be considered at the
nodes.

As an example, the reader can consider a pin-ended bar of a uniform
section 4 and modulus E in a two-dimensional problem shown in Fig.
1.2. The bar is subject to a uniform lateral load p and a uniform thermal
expansion strain

.

e e

=0T

Vi @0

X1

X

Fig. 1.2 A pin-headed bar
If the ends of the bar are defined by the co-ordinates x;, y; and x,, y, its
length can be calculated ‘as

L= ’\/{(xn -X)2+(n ")’¢)’}

and its inclination from the horizontal as

Ya—Wt
xn—x{.

a=tan?

Only two components of force and displacement have to be considered at

the nodes.
The nodal forces due to the lateral load are clearly
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U; —sin o
_ IVl ] cosal PL
{F} { ,,}, Ud[ | -sina[ 2

Val s coS o

and represent the appropriate components of simple beam reactions, pL/2.
Similarly, to restrain the thermal expansion ¢, an axial force (EaTA) is
needed, which gives the components -

U, cos )
- V‘ . sin (s 2

" { F} ol =l e BT
Va -sin «)

€0

Finally, the element displacements

ar- {5 - .

will cause an elongation (4, —u;) cos a+(v, - v) sin e This when multi-
plied by EA/L, gives the axial force whose components can again be
found by substitution of this force in place of EaTA in the previous
equation. Rearranging these in the standard form gives

U
{F}s—{F‘} (7l -
" 8 U”
) V»»S. )
cos? o sin « cos | -cos? & —sin acos & | (u; \
_EA| sinacosa sina | —sinacosa -sin’a v
T L | “costa ~sin acos i cos?a sin e cos & | | #a
~sin o cOs @ ~sin® a | sinacosa sin®a Vn

= [k]*{3}°

The components of the general Eq. (1.3) have thus been established for
the elementary case discussed. It is again quite simple to find the stresses
at any section of the element in the form of relation Eq. (1.4). For instance,
if attention is focused on the mid-section C of the beam the extreme fibre
stresses determined from the axial tension to the element and the bending
moment can be shown to be
o)\ _E[-cosa, —sina, cos a , sin o .
{ ’ "L [ -cos « , —sin a , o8 « , sin « %}

c L
pL’d M1
L) e

O3




6 THE FINITE ELEMENT METHOD

in which d is the half depth of the section, I its second moment of area.
All the terms of Eq. (1.4) can now be easily recognized.

For more complex elements more sophisticated procedures of analysis
are required but the results are of the same form. The engineer will
readily recognize that the so-called ‘slope-deflection’ relations used in
- analysis of rigid frames are only a special case of the general relations.

It may perhaps be remarked, 'in passing, that the complete stiffness .
matrix obtained for the simple element in tension turned out to be sym-
metric (as indeed was the case with all the submatrices). This is by no
means fortuitous but follows from the principle of energy.conserva-
tion and from its corollary—the well-known Maxwell-Betti reciprocal
theorem.

The element properties were assumed to follow a simple linear relation-
ship. In principle, similar relationships could be established for non-
linear materials, but discussion of such problems will be held over at this
stage.

1.3 Assembly and Analysis of a Structure

Consider again the hypothetical structure of Fig. 1.1. To obtain a com-
plete solution the two conditions of

(@) displacement compatibility, and

(b) equilibrium
have to be satisfied throughout.

Any systems of nodal displacements {8}

3
{8} = {I } ()

n,
listed now for the whole structure in which all the clements participate,
automatically satisfies the first condition.

As the conditions of overall equilibrium have already been satisfied
within an element all that is necessary is to establish equilibrium conditions
at the nodes of the structure. The resulting equations will contain the dis-
placements as unknowns, and once these have been solved the structural
problem is determined. The internal forces in elements, or the stresses,
can easily be found by using the characteristics established a priori for
each element by Eq. (1.4).

Consider the structure to be loaded by external forces {R}

R
{R}= { ] (1.8)
R,

applied at the nodes in addition to the distributed loads applied to the
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individual elements. Again, any one of the forces R, must have the same
number of components as that of the element reactions considered. In
the example in question

{R}= {“)::} | (1.9)

as the joints were assumed pinned, but at this stage a generality with an
arbitrary number of components will be assumed.

If now the equilibrium conditions of a typical node, i, are to be estab-
lished, each component of R; has, in turn, to be equated to the sum of the
component forces contributed by the elements meeting at the node. Thus,
considering all the force components we have:

{R}=Z{F} (1.10)
the summation being taken over all the elements. Introducing the charac-
teristics of the element -given by Eq. (1.3) and taking note only of the
appropriate forces F;, by using the submatrices of Eq. (1.6), the above
equations become '

{R}=Z _lz[k,...r'{s,.}+2{F‘}°.,+z{r;}-¢.. (L.11)

The inside summation is now taken over all the elements of the structure.
If a particular element does not in fact include the node in question, it
will contain no submatrices with an i suffix and, therefore, its contribution
will simply be zero. This fact is of considerable convenience when com-
putation schemes, either manual or for a digital machine, are bemg
organized, because immediately on establishment of the characteristics of
a particular element these can be summed in an appropriate location.
Once all elements have been considered the overall system of equatlons is.
established.
_This system of equations can be written simply as

(K18} = {R} - {F}, ~ {Fla (L12)
" in which the submatrices are
[Kim]=Z[kim]®
{F},=Z{F}°, : (L1
{Ff}co "E{Fl}a

with summations including all elements.

If different types of structural elements are used and are to be coupled it
must be remembered that the rules of matrix summation permit this to be
done only if these are of identical size. The individual submatrices to be
added have therefore to be built up of the same number of individual
components of force or displacement. Thus, for example, if a member
capable of transmitting moments to a node is to be coupled at that node



