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Preface

This book presents an introduction to probability theory, random
processes, and the analysis of systems with random inputs. It is written
at a level that is suitable for junior and senior engineering students and
presumes that the student is familiar with conventional methods of
system analysis such as convolution and transform. techniques. How-
ever, it may also serve graduate students as & concise review of material
that they previously encountered in widely scattered sources.

Since this is an engineering text, the treatment is heuristic rather
than rigorous, and the student will find many examples of the applica-
tion of these concepts to engineering problems. However, it is not
completely devoid of the mathematical subtleties, and considerable
attention has been devoted to pointing out spme of the difficultiés that
make a more advanced study of the subject essential if one is to master
it. The authors believe that the educational process is best served by
repeated exposure to difficult subject matter; this text is intended to
be the first exposure to probability and random pfocesses, but hopefully,
will not be the last. Thus, the book is not comprehensive, but deals’
selectively with those topics that the authors have found most useful’
in the solution of engineering problems.

A brief discussion of some of the significant features of this book
will help set the stage for a discussion of the various ways it can be used.
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vi PREFACE

Elementary concepts of discrete probability are introduced in Chapter 1;
first from the intuitive standpoint of the relative-frequency approach and
then from the more rigorous standpoint of axiomatic probability. Simple
examples illustrate all these concepts and are more meaningful to engineers
than are the traditional examples of selecting red and white balls from
urns.

The concept of a random variable is introduced in Chapter 2 along
with the ideas of probability distribution and density functions, mean
values, and conditional probability. A significant feature of this chapter
is a rather extensive discussion of many different probability density
functions and the physical situations in which they may occur. Chapter
3 extends the random variable concept to situations involving two or
more random variables and introduces the concepts of statistical inde-
pendence and correlation.

A general discussion of random processes and their classification is
given in Chapter 4. ‘The emphasis heres on selecting probability models
that are useful in solving éngineering problems. Accordingly, a great
deul of attention is devoted to the physical significance of the various
process clagsifications, with no attempt at mathematical rigor. A unique
feature of this chapter, which is continued in subsequent chapters, is
an introduction to the practical problem of estimating the mean of a
random process from an observed sample function.

Properties and applications of autocorrelation and cross-correlation
functions are discussed in Chapter 5. Many examples are presented in an
attempt to develop some insight into the nature of correlation functions.
The important problem of estimating autocorrelation functions is dis-
cussed in some detail. B _

Chapter 6 turns to a frequency-domain representation of random
processes by mtroducmg the concept of spectral density. Unlike most
texts, which simply define spectral density as a Fourier transform of the
correlation funetion, a more fundamental approach is adopted here in
order to bring out the physwal significance of the concept. This chapter
is the most difficult one in the book, but the authors believe the material
should be presented in this way. Instructors who wish to by-pass some
of the more fundamental problems may omit Section 6-2 and bridge the
gap by defining spectral density simply as the Fourier transform of the
correlation function.

Chapter 7 utilizes the. .concepts of correlation functions and spectral
density to analyze the response of linear systems to random inputs. Ina
sense, this chapter is a culmination of all that preceded it, and is partic-

- ularly significant to engineers who must use these concepts. Hence, it
contains a great many examples that are relevant to engineering problems
and emphasizes the need for mathematical models that both are realistic
and manageable.

Chapter 8 extends the concepts of systems analysis to consider systems
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that are optimum in some sense. Both the classical matched filter for
known signals and the Wiener filter for random signals are considered
from an elementary standpoint.

=~ In a more general vein, each chapter contains references that the
student can use to extend his knowledge. There is also a2 wide selection of
problems at the end of each chapter, and, at the end of the book, a num-
ber of Appendixes that he will find useful in solving these problems,
along with a set of selected answers,

As an additional aid to learning and using the concepts and methods
discussed in this book, there are exercises at the end of many of the
sections, The student should consider these exercises as part of the
reading assignments and should make every effort 1o solve each one
before going on to the next section. Answers are provided in order that
he may know when his efforts have been successful. It should be noted,
however, that the answers to each exercise may not be listed in the same
order as the question. This is intended to provide an additional challenge
to the student. The presence of these exercises should substantially
reduce the number of additional problems that need to be assigned by
the instructor. ' .

The material in this text has been used in a one-semester, three-
credit course offered in the first semester of the junior year. Not all
sections of the text are used in this course but at least 909 of it is covered
in reasonable detail. The sections usually omitted include 3-6, 4-6,
5-4, 5-9, 6-9, and 8-6; but other choices may be made at the diseretion
of the instructor. There are, of course, many other ways in which the
text material could be utilized. For example, a ohe-semester course
with a more relaxed pace could be given by omitting all of Chapter 8
in addition to. the sections noted above. For those schools on the
quarter-system, the material noted above could be covered in a four-
credit hour course. If a three-credit hour course were desired, in addi-
tion to the omissions noted above, it is suggested that Sections 1-4,
1-5, 1-6, 1-8, 2-6, 2-7, 3-5, 6-2, 6-8, 6-10, 7-9, and all of Chapter 8 can be
omitted if the instructor supplies a few explanatory words to bridge
gaps. Obviously, there are also many other possibilities that are open
to the experienced instructor. '

- It is a pleasure for the authors to acknowledge the very substantial
aid and encouragement that they have received from their colleagues and
students. A complete list is too lengthy to include here, but it is appro-
priate to mention the valuable suggestions and comments received from
Professors J. Y. S. Luh and P. A. Wintz of Purdue University.

The careful and perceptive readings of the preliminary manuscript by
Professor J. E. Kemmerly of the California State College at Fullerton and
Professor James L. Massey of Notre Dame University are gratefully
acknowledged. Their many suggestions have greatly improved the
final version. A special note of thanks is due to Mr. Lewis A. Thurman;
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of Purdue University, for his diligent efforts in proofreading, working
problems, and making suggestions. Last, but not least, we acknowledge
the contributions made by hundreds of students who used and criticized
the earliest versions of this material.

July 1971 GeorGE R. CoOPER
CLARE D. McGiLLEM
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CHAPTER
1
Introduction to Probability

e

1.1 Engineering Applications of Probability

Before embarking on a study of elementary probability theory, it is
desirable to motivate such a study by considering why probability theory
is useful in the solution of engineering problems. This will be done in
two different ways. The first is to suggest a viewpoint, or philosophy,
concerning probability that emphasizes its universal physical reality
rather than treating it as another mathematical discipline which may be
useful occasionally. The second is to note some of the many different
types of situations that arise in normal engineering practice in which
the use of probability concepts is indispensible.

A characteristic feature of probability theory is that it concerns itself
with situations that involve uncertainty in some form. The popular
conception of this relates probability to such activities as tossing dice,
drawing cards, and spinning roulette wheels. Because the rules of prob-
ability are not widely known, and because such situations can become
quite complex, the prevalent attitude is that probability theory is a
mysterious and esoteric branch of mathematics that is aceessible only to
trained mathematicians and is of only limited value in the real world.
Since probability theory does deal with uncertainty, another prevalent
attitude is that a probabilistic treatment of physical problems is an

5506519 1



2 INTRODUCTION TO PROBABILITY

inferior substitute for a more desirable exact analysis and is forced on the
analyst by a lack of complete information. Both of these aititudes are
false,

Regarding the alleged difficulty of probability theory, it is doubtful
if there is any other branch of mathematics or analysis which is so com-
pletely based on such 4 small number of basic concepts that are so easily
understood. Subsequent discussion will reveal that the major body of
probability theory can be deduced from only three axioms that are almost
self-evident. Once these axioms and their applications are understood,
the remaining concepts follow in a logical manner.

The attitude that regards probability theory as a substitute for exact
analysis stems from the current educational practice of presenting phys-
ical laws as deterministic, immutable, and strictly true under all circum-
stances. Thus, a law that describes the response of a dynamical system
is supposed to predict that response exactly if the system excitation is
known exactly. For example, Ohm’s law

v(t) = Ri(t)

is assumed to be exactly true at every instant of time, and on a macro-
scopic basis this assumption may be well justified. On a microscopic
basis, however, this assumption is patently false—a fact that is immedi-
ately obvious to anyone who has tried to connect a large resistor to the
input of a high-gain amplifier and listened to the resulting noise.

In the light of modern physics and our emerging knowledge of the
nature of matter, the viewpoint that natural laws are deterministic and
exact is untenable. They are at best a representation of the average
behavior of nature. In many important cases this average behavior is
close enough to that sctually observed so that the deviations are unim-
portant. In such cases the deterministic laws are extremely valuable
because they make .t possible to predict system behavior with a mini-
mum of effort. In other equally important cases the random deviations
may be significant—perhaps even more significant than the deterministic
response.~ For these cases, analytic methods derived from the concepts
of probability are essential.

From the above discussion it should be clear that the so-called exact
solution is not exact at all, but in fact represents an idealized special
case which actually never arises in nature. The probabilistic approach,
on the other hand, far from being a poor substitute for exactness, is
actually the method which most nearly represents physical reality. Fur-
thermore, it includes the deterministic result as a special case.

It is now appropriate to discuss the types of situations in which prob-
ability concepts arise in engineering. The examples presented here
emphasize situations that arise in systems studies; but they do serve to
illustrate the essential point that engineering applications of probability
tend to be the rule rather than the exception.

grnr e



ENGINEERING APPLICATIONS OF PROBABILITY 3

Random input signals. In order for a physical system to perform a useful
task, it is usually necessary that some sort of forcing function (the input
signal) be applied to it. Input signals that have simple mathematical
representations are convenient for pedagogical purposes or for certain
types of system analysis, but they seldom arise in actual applications.
Instead, the input signal is more likely to involve a certain amount of
uncertainty and unpredictability that justifies treating it as a random
signal. There are many examples of this: speech and musie signals that
serve as inputs to communication systems; random digits applied to a
computer; random command signals applied to an aireraft flight control
system; random signals derived from measuring some characteristic of a
manufactured product, and used as inputs to a process control system;
steering wheel movements in an automobile power-steering system; the
sequence in which the call and operating buttons of an elevator are
pushed; the number of vehicles passing various checkpoints in a traffic
control system; outside and inside temperature fluctuations as inputs to
& building heating and airconditioning system; and many others.

Random disturbances, Many systems have unwanted disturbances
applied to their input or output in addition to the desired signals. Such
disturbances are almost always random in nature and cal] for the use of
probabilistic methods even if the desired signal does not. A few specific
cases serve to illustrate several different types of disturbances. If, for
a first example, the output of a high-gain amplifier is connected to a
loudspeaker, one frequently hears a variety of snaps, crackles, and pops.
This random noise arises from thermal motion of the conduction electrons
in the amplifier input circuit or from random variations in the number of
electrons (or holes) passing through the tubes and transistors. It is
obvious that one cannot hope to calculate the value of this noise at every
instant of time since this value represents the combined effects of literally
billions of individual moving charges. It is possible, however, to calcu-
late the average power of this noise, its frequency spectrum, and even the
probability of observing a noise value larger than some specified value,
As a practical matter, these quantities are more important in determining
the quality of the amplifier than is a knowledge of the instantaneous
waveforms.

« As a second example, consider a radio or television receiver. In
addition to noise generated within the receiver by the mechanisms noted,
there is random noise arriving at the antenna. This results from distant
electrical storms, man-made disturbances, radiation from space, or ther-
mal radiation from surrounding objects. Hence, even if perfect receivers
and amplifiers were available, the received signal would be combined
with random noise. Again, the calculation of such quantities as average
power and frequency spectrum may be more significant than the determi-
nation of instantaneous value.
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A different type of system is illustrated by a large radar antenna,
which may be pointed in any direction by means of an automatice control
system. The wind blowing on the antenna produces random forces that
must be compensated for by the control system. Since the compensation
is never perfect, there is always some random fluctuation in the
antenna direction; it is important to be able to calculate the effective
value of this fluctuation.

A still different situation is illustrated by an airplane flying in turbu-
lent air, a ship sailing in stormy seas, or an army truck traveling over
rough terrain. In all these cases random disturbing forces, acting on
complex mechanical systems, interfere with the proper control or guidance
of the system. It is important to be able to determine how the system
responds to these random input signals.

Random system characteristics. The svstem i1tself may have character-
istics that are unknown and that vary in a random fashion from time to
time. Some typical examples are: aircraft in which the load (that is,
the number of passengers or the weight of the cargo) varies from flight
to flight; troposcatter communication systems in which the path attenua-
tion varies radically from moment to moment; an electric power system
in which the load (that is, the amount of energy being used) fluetuates
randomly ; and a telephone system in which the number of users changes
from instant to instant.

System reliability. All systems are composed of many individual ele-
nments, and one or more of these elements may fail, thus causing the entire
svstem, or part of the system, to fail. The times at which such failures
will occur is unknown, but it is often possible to determine the probability
of failure for the individual elements and from these to determine the
“mean time to failure” for the system. Such reliability studies are deeply
involved with probability and are extremely important in engineering
design. Assystems become more complex, more costly, and contain larger

numbers of elements, the problems of reliability become more difficult
and take on added significance. -

Quality contrel. An important method of improving system reliability
is to improve the quality of the individual elements, and this can often
be done by an inspection process. As it may be too costly to inspect
every element after every step during its manufacture, it is necessary
to develop rules for inspecting elements selected at random. These rules
are based on probabilistic concepts and serve the valuable purpose of
maintaining the quality of the product with the least expense.

Information theory. A majorobjective of information theory is to provide
a quantitative measure for the information content of messages such as
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printed pages, speech, pictures, graphical data, numerical data, or phys-
ical observations of temperature, distance, velocity, radiation intensity,
and rainfall. This quantitative measure is necessary in order to be able
to provide communication channels that are both adequate and efficient
for conveying this information from one place to another. Since such
messages and observations are almost invariably unknown in advance
and random in nature, they can be described only in terms of probability.
Hence, the appropriate information measure is a probabilistic one.
Furthermore, the communication channels are subject to random dis-
turbances (noise) that limit their ability to convey-information, and
again a probabilistic description is required.

It should be clear from the above partial listing that almost any
engineering endeavor involves a degree of uncertainty or randomness
that makes the use of probabilistic coneepts an essential tool for the
present-day engineer. In the case of system analysis, it is necessary
to have some description of random signals and disturbances. There
are two general methods of describing random signals mathematically.
The first, and most basic, is a probabilistic description in which the
random quantity is characterized by a probability model. This method
is discussed later in this chapter.

The probabilistic description of random signals cannot be used directly
in system analysis since-it tells very little about how the random signal
varies with time or what its frequency spectrum is. It does, however,
lead to the statistical description of random signals, which is useful in
system analysis. In this case the random signal is characterized by a
statistical model, which consists of an appropriate set of average values
such as the mean, variance, correlation function, spectral density, and
others. These average values represent a less precise deseription of the
random signal than that offered by the probability model, but they are
more useful for system analysis because they can be computed by using
straightforward and relatively simple methods. Some of the statistical
averages will be discussed in subsequent chapters.

1-2 Definitions of Probability

One of the most serious stumbling blocks in the study of elementary
probability is that of arriving at a satisfactory definition of the term
‘“probability.” There are, in fact, four or five different definitions for
probability that have been proposed and used with varying degrees of
success. They all suffer from deficiencies in concept or application.
Ironically, the most successful “definition’ leaves the term probability
undefined.

Of the various approaches to probability, the two that appear to
be most useful are the relative-frequency approach and the azxiomatic
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approach. The relative-frequeney approach is useful because it attempts
to attach some physical significance to the concept of probability and
thereby makes it possible to relate probabilistic concepts to the real
world. Hence the application of probability to engineering problems is
almost always accomplished by invoking the concepts of relative fre-
quency, even when the engineer may not be conscious that he is doing so.

The limitation of the relative-frequency approach is the difficulty of
using it to deduce the appropriate mathematical structure for situations
that are too complicated to be analyzed readily by physical reasoning.
This is not to imply that this approach cannot be used in such situations,
for it can, but it does suggest that there may be a much easier way to
deal with these cases. The easier way turns out to be the axiomatic
approach.

The axiomatic approach treats the probability of an event as a num-
ber that satisfies certain postulates but is otherwise undefined. Whether
or not this number relates to anything in the real world is of no concern
in developing the mathematical structure that evolves from these postu-
lates. Engineers may object to this approach as being too artificial
and too removed from reality, but they should remember that the whole
body of circuit theory was developed in essentially the same way. In
the case of circuit theory the basic postulates are Kirchhoff’s laws and
the conservation of energy. The same mathematical structure emerges
regardless of what physical quantities are identified with the abstract
symbols—or even if no physical quantities are associated with them.
It is the task of the engineer to relate this mathematical structure to the
real world in a way that is admittedly not exact, but.that leads to useful
solutions to real problems.

From the above discussion it appears that the most useful approach
to probability for engineers is a two-pronged one, in which the relative-
frequency concept is employed in order to relate simple results to physical
reality, and the axiomatic approach is <1 ployed to develop the appropri-
ate mathematics for more complicated situations. It is this philosophy
that will be presented here.

1-3 The Relative-Frequency Approach

As its name implies, the relative-frequency approach to probability is
closely linked to the frequency of occurrence of some particular event.
The term event is used for one of the most basic concepts of probability
theory. An event is something that may or may not happen. For
example, if a coin is tossed the result may be a head or a tail and each of
these is an event.

In order to examine this concept more precisely, however, it is neces-
sary to introduce the idea of an experiment and the outcomes of that



