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INTRODUCTION

No prior technology topic has captured the interest and attention of people as much
and as fast as the area of robotics. Effective industrial automation, inspection, parts
handling and cost-efficient production necessitate the use of robotics. Scientists,
researchers, and managers in industry, government and university are intensely
interested in this technology. New commercial products and systems emerge
monthly and a wealth of robotics institutes have been established in many major
universities. At the August 1982 SPIE Symposium in San Diego, a three-day
conference was held on this topic. The 45 papers from this conference are
available as SPIE Volume 360 entitled Robotics and Industrial Inspection. At the
November 1983 SPIE Cambridge meeting, another 105 papers on this topic will be
presented (SPIE Volume 449, entitled /ntelligent Robots: 3rd International Confer-
ence on Robot Vision and Sensory Controls).

This research area is clearly most appropriate for this present Critical Review of
Technology set of papers. The ten papers included herein were all invited papers by
experts and leaders in various aspects of robotics. Although they do not represent
all aspects of this technology, they provide a review of ten different aspects of this
highly multidisciplinary technology. A history of robot vision or computer vision is
advanced in the first paper. Image sensors are then surveyed. Binary and gray-
scale data handling is the next topic discussed. Shape discrimination and distor-
tion-invariant pattern recognition are treated in the next two papers. Force sensors
are the next topic surveyed. This is followed by the control aspects of robots, a
specific case study for the nuclear industry, and finally survey reviews on three-
dimensional image processing and object measurements.

David Casasent
Carnegie-Maellon University

Ernest L. Hall
University of Tennessee
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Robot Vision for Machine Part Recognition +

K. S. Fu
School of Electrical Engineering
Purdue University
W. Lafayette, Indiana 47907
U.S.A.

I. Introduction

Most industrial applications of computer vision can be categorized into two groups. Thgy
are (1) visual inspection and (2) machine parts recognition. There are several review arti-
cles for automatic visual inspection [1,30,31]. This paper gives a brief review of robot
vision system for machine part recognition. A robot vision system for machine parts recog-
nition contains four sub-systems: (1) sensing, (2) segmentation, (3) description, and (4)
recognition. A block diagram of such a system is shown in Fig. 1.

Machine
part

»| Sensing Segmentation|—={ Description [~-={Recognition [~

Fig. 1 Computer vision system for machine part recognition

II. Visual Sensing

In a robot vision system, visual information is converted into electrical signals by the
use of visual sensors. The most commonly used visual sensors are vidicon cameras and solid
state diode arrays. The output of a vidicon camera can be digitized into pixels with two or
more dgray levels for digital processing. on the other hand, an array of binary outputs can
be directly obtained from a solid state diode array. More sophisticated visual sensors in-
clude laser, CCD and CID cameras. The vision system may use one camera or multiple cameras.
Stereo vision can be accomplished using two cameras. Multiple views of an object or a
(time) sequence of object images can be obtained by a multi-camera system.

Illumination of a scene can often be controlled in an industrial environment. A well-
designed lighting system illuminates the scene so that the complexity of the resulting image
is minimized, while the information required for recognition 1is enhanced. Commonly used
lighting system for industrial applications include diffuse-lighting [74], backlighting
[30}, spatially modulated lighting [21,54], and directional lighting [30]. It should be
pointed out that ordinary 1light sources may not be the best choice for lighting. Light
sources with special spectral ranges or lasers have been used in some applications.

III. Segmentation ftt

There is no universal method of segmenting an image into subimages. During the past de-
cade, many segmentation techniques have been proposed [32]. These segmentation techniques
can be categprized into three classes, (1) characteristic feature thresholding or cluster-
ing, (2) edge detection, and (3) region extraction. One way to define image segmentation is
as follows. Let X denote the array of picture points (or pixels), i.e., the set of pairs

{ilj}I i=l,2,...N, j=l,2,...M
where N and M are the number of pixels in the x and y directions respectively. Let Y be an
nonempty subset of X consisting of contiguous pixels. Then a uniform predicate P(Y) is one
which assigns the value true or false to Y, depending only on properties related to the

brighgness qf.the pixels of Y. A segmentation of X for a uniform predicate P is a partition
of X into disjoint nonempty subsets Xy X2,...,xn such that:

+ This work was supported by the NSF Grant ECS 81-19886.
tt For detailed discussions and references on segmentation, see [32,36,39,68].
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Xi = X

=S

(1)
1

(ii) xi i=1,2,...,n, is connected.
r

(iii) P(xi) = TRUE for i=1,2,:.«yN

i

(1)
(iv) P(Xﬂij) = FALSE for i#j where X and Xj are adjacent.

Segmentation can also be considered basically a process of pixel classification [68]. An
image is segmented into subimages by assigning the individual pixel to classes. Thus, many
pattern classification methods [28] can be applied to image segmentation. For example, when
an image ie segmented by thresholding its gray level, the pixels are classified into "dark"
and "light" classes so that dark objects are distinguished from their light background.
Similarly, in edge detection, the pixels are classified into "edge" and "not edge" by vari-
ous edge operators proposed.

(A) Characteristic feature thresholding or clustering

Characteristic feature thresholding is a technique widely used in image segmentation. In
its most general form, thresholding is described mathematically as:

S(x,y) = k 1if Tk—l < f(x,y) < Tk k=0,1,2)¢00¢M (2)

where (x,y) is the x and y co-ordinate of a pixel; S(x,y), f(x,y) are the segmented and the
characteristic feature (e.g. gray level) functions of (x,y) respectively; TgseeesTp are

threshold values with T0 equal to the minimum and Tm the maximum; m is the number of dis-

tinct labels assigned to the segmented image. A threshold operator T can be viewed as a
test involving a function T of the form

T(x,y,N(x,y),£(x,¥))

where N(x,y) denotes some local property of the point (x,y), e.g., the average gray level
over some neighborhood. Weszka [90] divided thresholding into three types depending on the
functional dependencies of the threshold operator T. When T depends only on f£(x,y), the
threshold is called global. If T depends on both f(x,y) and N(x,y), then it is called a lo-
cal threshold. If T depends on the coordinate values x,y as well as on f(x,y) and N(x,y).,
then it is called a dynamic threshold.

There are a number of global threshold selection schemes. Some are based on the charac-
teristic feature (e.g. gray level) histogram, others are based on local properties such as
the gradient or Laplacian of an image. For an image consisting of object and background
where the percent of the object area is known, Doyle suggested the "p-tile" method which
chooses as a threshold the gray level which most closely corresponds to mapping at least
(1-p)$ of the gray levels into the object. If, for example, dark objects occupy 20% of the
image area, then the image should be thresholded at the 80th percentile, or, more precisely,
at the largest gray level allowing at least 20% of the pixels to be mapped into the object.
This method is not applicable if the object area is unknown or varies from image to image.
Dynamic thresholding is quite powerful in segmentation due to the fact that it allows the
use of concepts such as proximity of points sharing a given property in order to separate
objects from the background. Figure 2 shows an example of the segmentation results obtained
by dynamic thresholding [56]. In this example, the images were thresholded to determine
border points. A gradient operation was applied to the images to determine edges. The
boundary of objects shown in Fig. 2 consist of points which passed both the border and edge
tests. Thresholding was applied to both original and gradient images.

Fig. 2 %Tg%e of industrial parts and segmentation result (From Nakagawa and Rosenfeld
9])



Clustering of characteristic features applied to picture segmentation is the multid@mep-
sional extension of the concept of thresholding. Typically, two or more charactgrlstlc
features are used and each class of regions is assumed to form a distinct cluster in tbe
space of these characteristic features., A clustering method is used to group the points in
the characteristic feature space into clusters. These clusters are then mappeq chk to the
original spatial domain to produce a segmentation of a picture. The characteristic features
that are commonly used in picture segmentation by clustering not only include gray _values
through different filters, it may include any feature that one thinks is helpful to his seg-
mentation problem; for example, texture measures defined on a local neighborhood may be
used. The reason one wants to use two or more characteristic features to perform image seg-
mentation is that sometimes there are problems not resolvable with one feature that can be
resolved with two or more features [32].

(B) Edge detection

Edge detection is an image segmentation technique based on the detection of discontinui-
ty. An edge or boundary is the place where there is a more or less abrupt change in gray
level. To produce a closed boundary, the edge elements extracted have to be connected to-
gether to form a closed curve. Edge element extraction methods can be classified as (i)
high-emphasis spatial frequency filtering, (ii) gradient operators, and (iii) functional ap-
proximation, Edge element combination consists of eliminating false edge elements and merg-
ing the edge elements into boundaries, and is generally carried out by three classes of
techniques: (i) heuristic search, (ii) relaxation, and (iii) line and curve fitting. Many
techniques incorporate edge element extraction as part of the process of edge or boundary
detection, so there is no need to separate edge element extraction from edge element combi=
nation.

a) Edge Element Extraction

(a.1) High—Em hasis Spatial Frequency Filtering. Since high spatial frequencies are as-
sociated with sEarp changes 1in intensity, so one can enhance or extract edges by performing
high-pass filtering: i.e., take the Fourier transform of the picture, say F(f(x,y)) = F(u,v)
where f(x,y) and F(u,v) are the original gray level function and its Fourier transform
respectively, F is the Fourier operator. Multiply F by the linear spatial filter H : E(u,v)

= F{u,v) *H{u,v) and take the inverse transform e(x,y) = F"l(E(u,v)) where e(x,y) is the fil-
tered picture of f(x,y) and E(u,v) its Fourier transform, and F-l is the inverse Fourier
transform operator. The problem here is filter design.

(a.2) Gradient Operators. The gradient operator is defined as

3f o 3f
VE(Y) = gE 1+ gE S (3)

where |9f(x,y)]| = ((%§ 2, (%5)2)1/2
()
and the direction of vf(x,y) is tan~! ~%¥—
(3%)

f is the original gray level function; 1 and j are unit vectors in the positive x and y
directions respectively.

Quite a few proposed edge detection techniques are based on the digital approximations or
variations of equation (3) whiech will produce a high magnitude where there is an abrupt
change in gray level and a low magnitude where there is little change in gray level. Ro-
berts' cross operator is based on a 2x2 window

g(i,j) = [(f(i,j) - f(i+1,j+1))2 + (f(i+1,3) - f(i,j+1))%]1/2 (4)

where f(i,]J) and g(i,j) are the gray level function and magnitude of gradient of point (i,j)
respectively. The operator requires that there is a distinct change in intensity between
two adjacent points in the gray value function, so only very sharp edges with high contrast
between the surfaces which form the edges will be detected. This method cannot detect ill
dgfined edges (edges which are formed by a gradual change in intensity across the edge).
Since the computation is based on a small window, the result is quite susceptible to noise.
Kirsch's, Sobel's, and Prewitt's operators are based on a 3x3 neighborhood. The main
difference between these operators are the weights assigned to each element of the 3x3 tem-
plate. An adaptive local operator was proposed by Rosenfeld et al. [68].

(a.3) Functional Approximations. Edge detection can be considered as an approximation
problem. For every point (x',y') in an image, Hueckel used a circular neighborhood D about
(x',y') and asked the question "Are the intensities (x,y) in D the noisy form of an ideal
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edge which is characterized by a step function?" Let

if cx+sy < p

F(x,y,c,s,p,b,d) = [':+d if cx+sy > p, (5)

where the x-y co-ordinate system has its origin at the center of the circglar reg@op; F is
the step function. The task of the operator is to best approximate a given empirical edge
element whose gray values are f(x,y) by an ideal edge element characterized by a step func-
tion F. As a measure of closeness, E (the square of the Hilbert distances between f and F)

was chosen as
E= , [f(x,y) - F(x,y,c,s,p,b,d)]% dxdy (6)

Hueckel's operator is an efficient solution to the minimization of E. The minimization
procedure was facilitated by choosing orthonormal functions (e.g., Fourier functions) over
D. The results of the minimization were the best edge and a measure of the goodness of the
edge. This technique was later extended to detect lines.

Persoon's operator was defined over a window of size 5x5 pixels and the two columns to
the left and to the right of the central one were approximated by linear functions. Devia-
tions from the actual gray levels for the left and right linear function were computed and
the right gradient (0°) was defined as a function of the two deviations and the average gray
values corresponding to the left and right two columns. The picture was then rotated 7
times over 45° and seven additional gradients were computed. The maximum value of the 8
gradients was taken as an indication of the goodness of the edge which was perpendicular to
the direction of the gradient. This edge detector solves some of the problems related to
edge direction and noise but takes more computation time than some simpler edge operators.

b) Edge Element Combination (Streak or Boundary Formation)

{b.1l) Heuristic Search and Dynamic Programming. Heuristic search is a technique using
state space search methods where heuristic information is used to limit the space to be
searched. Martelli formulated the edge detection problem as a heuristic search for the
shortest path on a graph. The graph nodes (or states) were edge elements defined by two
neighboring pixels, e.g., the points A=(i,j), B=(i,j+1) defined the directed edge element
AB. The direction of the edge was obtained with the convention of moving clockwise around
the first pixel. He then stated that an edge was a sequence of adjacent edge elements that
started in the top row ended in the bottom row contained no loops and had no element whose
direction was "up." So an edge was a path in the graph that represented the state-space and
the problem of finding the best edge in a picture reduced to the problem of finding an op-
timal path in the graph. He then embedded properties of edges into an evaluation Ffunction
and the edge which minimized this function was sought. Some of the drawbacks of this ap-
proach are that the algorithm is sequential in nature and the proposed approach does not
provide for backtracking, so that once a mistake is made in the midst of the process the
detected edge could be far off from the desired edge. The construction of a proper evalua-
tion function is another problem.

Montanari proposed using dynamic programming techniques to perform edge detection, a
figure of merit representing the heuristic information was used to determine the relative
value of different paths but was not used to guide the search as in the heuristic search
mentioned above. This figure of merit determined the best path once they had all been
enumerated. Montanari discussed finding a smooth, dark curve of fixed 1length. The curve
was embedded 1in a noisy background, but since the merit function did not guide the search,
the computation time was independent of the noise level (which would not be the case if the
merit function guided the search as in heuristic search).

{(b.2) Relaxation. Rosenfeld and Riseman et al. used a relaxation technique to connect
edge elements, The technique is an iterative process where the probability that a candidate
edge element is a true edge element is estimated at each iteration. Some of the advantages
of this approach are that it is a parallel process and it utilizes spatial information.
Some of the disadvantages are that the construction of the compatibility function which up-
dates the probabilities of edge elements is not trivial and the convergence rate of the pro-
cess is sometimes slow.

(b.3) Line and Curve Fitting. Another technique of connecting edge elements together is
to Tit 1Tnes or curves through the edge elements. Duda and Hart [23] proposed an efficient
solution to the Hough transform which is an ingenious way of detecting colinear points.
Suppose we have a set of n points {(xl,yl), (xz,yz), ceey (xn,yn)} and we want to find a set

of straight lines that fit them. We transform the points (xi,yi) into the sinusoidal curves




in the e-p plane defined by

= a1 7
P Xjcosé + y;sine (7

It is obvious that curves corresponding to colinear points have a common point of inter-
section. This point in the 0-¢ space say (90,00), defines the line passing through the col-

inear points, The implementation is to quantize the 6-p space into an array of cells and
plot these sinusoidal curves on this array of cells. The number of curves Fhat pass through
every cell in the array is recorded. If the count in a given cell (Oi,oi) is k, then pre-

cisely k figure points lie (to within quantization error) along the line whose normal param-

eters are (Oi,pi). The Hough transform concept can be extended to curves. Some of the lim-

itations are that the results are sensitive to the quantization of both'e‘and p, and the
technique finds colinear points without regard to continuity. Thus the position of a best-
fit line could be distorted by the presence of unrelated points in another part of the pic-
ture.

There are other techniques of edge detection such as template matching which can be ap-
plied not only in edge detection but in other areas as well, e.g., object extraction. Tem-
plate matching works well in a very constrained environment but fails where there is great
variation of the patterns to be matched.

(C) Region Extraction

Another way of doing image segmentation instead of finding boundaries of regions, is to
divide the image into regions. Region extraction techniques can be broken down into thgee
categories, 1) region merging, 2) region dividing, and 3) a combination of region merging
and dividing.

(1) Region Merging. Muerle and Allen used regional neighbor search method to merge re-
gions of similar properties., Brice and Fennema [17] formed connected components of equal
intensity, refined with some heuristics. Pavlidis [58] partitioned a picture into a collec-
tion of l-dimensional strips, divided the strips into segments and merged the segments with
similar approximation coefficients. Feldman and Yakimovsky used semantics to do region
merging. They tried to maximize the probability that all regions and borders were correctly
interpreted. Rosenfeld et al. used a relaxation approach, also called iterative probabilis-
tic process to do scene labelling.

Tenenbaum and Barrow proposed IGS (Interpretation Guided Segmentation) as an approach to
region merging. The program iteratively processed the scene until its components are
semantically consistent. Gupta and Wintz used a minimum distance classifier which inter-
preted each initial region as belongifig to one of a small predetermined number of different
classes, Neighboring regions were merged based on their class membership. Jarvis used a
shared near neighbor clustering technique to do region merging. Tsuji and Fujiwara used
linguistic techniques to perform region merging.

(2) Region Dividing. One way of doing picture segmentation by region extraction is the
region dividing approach. Robertson et al. used a mean vector of gray levels of a mul-
tispectral image to perform region dividing. Klinger proposed to use regular decomposition
for image segmentation

(3) Region Merging and Dividing. Horowitz and Pavlidis approached the problem using a
"split and merge" principle. Regions were described in terms of an approximating function.
They merged adjacent regions having similar approximations and split those regions that had
large approximating errors.

IV. Description

The description problem in a robot vision system is one of extracting important proper-
ties or features for recognition purpose. General image properties include shape, texture
and color. Descriptors for machine part recognition are however primarily based on shape
information. There are three basic approaches to shape description. Both the skeleton and
the (outer) boundary of an object can be used to represent its shape. Ideally speaking, the
shape descriptors selected should be independent of translation, rotation and scaling and
contain discriminating information for shape recognition.

(A) Functional shape descriptors

Moments and Fourier descriptors have been suggested as shape descriptors [40, 63,100].
Let C denote the (outer) boundary of an object, which is a simple closed contour with
representation (x(%),y(%)) = C(%) where % is the arc length along the contour. A point mov-
ing along the boundary generates the complex function u(%) = x(%) + jy(%) which is periodic
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with period L. The Fourier expansion of u(%) can be written as

a(e) = ianejn(ZW/L)z

with the Fourier descriptors

ay = L L u(yemIBVEInty,

A truncated sequence {ajin = -M,...,0,1,...,M} can be used as shape features for recogni-

tion purpose. The surface area bounded by the object contour and its skeleton can be com-
puted from a given set of Fourier descriptors [63].

Chen and Shit suggest the following shape features in terms of Fourier descriptors:

(1) Roundish degree

1= lagl /7 X Uagl + la_gh
n=1

F

when Fl =1, C is a circle; 0 < Fl < 1 otherwise.
(2) Slim degree
Fo=2la_j1 / (lagl + la_;1)
F2 = 0 when C is a circle and 0 < F2 < 1 otherwise.

(3) Diffusion

F. = (Eerimeter)2
3 47 (AREA)

where
AREA = ¢ Enlanlz
(4) Concavity

- ¥ o3 2
Fo= X n’(lag1® - la_|
n=1

2y 7 Qap? + 1a_1?

F4 = 1 when C is a circle and Fy < 1 when C is concave. For other cases, F4 > 1.

(B) Heuristic shape descriptors

Many intuitively appealing measurements have been proposed as shape descriptors. Agin

and Duda [2) have used the following shape features for recognition of foundry castings:

X} = perimeter of figure

X, = square root of area

Xy = total hole area

Xy = minimum radius

Xg = maximum radius

Xg = average radius

Xy = compactness (X;/x,)

Both Agin and Duda and Chen and Shi use a tree classifier for shape recognition based on
their suggested shape features.

+ Proc. 5th Int'l. Conf. Pattern Recognition, 1980.



(C) syntactic shape description

The basic idea of syntactic or structural pattern recognition is to represent a pattern
in terms of its components and the relations among them. The simplest components are called
primitives [27,29,42,43]. For shape description in terms of object median curve or boun-
dary, straight line segments or curve segments are often suggested as primitives. Length,
slope and curvature can be used as the attributes of the primitives. The median curve or
contour of an object is then represented as a sequence of the primitives. A set of struc-
tural or syntax rules can be inferred to characterize the structural interrelationships of
these sequences (or strings of primitives) describing the objects of interest.

Vamos [87] has proposed to use a context-free grammar for building machine parts from
picture primitives. As shown in Fig. 3(a), the grammar has four primitives: straight line,
arc, node and undefined. These primitives are then assembled by the syntax rules into gen-
eralized picture primitives, as shown in Fig. 3(b), and further refined into final objects.
A typical sequence of steps is shown in Fig. 4. Using segments of straight lines or curves
as primitives, Jakubowski [43] has suggested the use of extended context-free grammar to
characterize machine parts shapes. Regular right part grammars are employed to generate
contours of machine parts.

A method recently proposed for syntactic shape recognition is the use of attributed gram-
mars [59,81,98,99]. In this method, a primitive is define by a symbol and its associated
attributes. The rules governing the construction of the objects from the primitives con-
sists of syntax rules which provide the basic structural description as well as semantic or
attribute rules which assign meaning to that description.

V. Recognition and Interpretation

Recognition of a pattern usually means to assign the pattern to a particular class. With
the additional structural and semantic information, an interpretation of the pattern (or a
scene) can often be made. There are three major approaches to pattern recognition: (i)
template-matching, (ii) decision-theoretic or statistical approach, and (iii) structural or
syntactic approach. They are briefly reviewed in this section.

A
B Nl

Fig. 3 (a) Picture primitive, and (b) Generalized picture primitive (From Vamos [1977])

AN A RGN
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{
|
J

object lobe GPP  primitive

Fig. 4 Picture hierarchy (From Vamos [1977])
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(A) Template-matching

In the template-matching approach, a set of templates or prototypes, one for each pattern
class, 1is stored in the machine. The input pattern with unknown classification is matched
or compared with the template of each class, and the classification is based on a preselect-
ed matching criterion or similarity measure (e.g., correlation). 1In other words, if the in-
put pattern matches the template of ith pattern class better than it matches any other tem-
plates, then the input pattern is classified as from the ith pattern class. Usually, for
the simplicity of the machine, input patterns and the templates are represented in their
raw-data form, and the decision-making process is nothing but matching the unknown input to
each template. The disadvantage of this approach is that it is sometimes difficult to
select a good template for each pattern class, and to define an appropriate matching cri-
terion. This difficulty is especially remarkable when large variations and distortions are
expected in the patterns under study. Recently, the use of flexible template-matching or
"rubber mask" techniques has been proposed.

(B) Decision-theoretic approach

In the decision-theoretic approach, a pattern is represented by a set of N features or an
N-dimensional feature vector, and the decision-making process is based on a similarity meas-
ure which, in turn, is expressed in terms of a distance measure or a discriminant function.
In order to take noise and distortions into consideration, statistical and fuzzy-set methods
have been proposed. The characterization of each pattern class could be in term of an N-
dimensional class-conditional probability density function or a fuzzy set, and the classifi-
cation (decision-making) of patterns is then based on a (parametric or nonparametric) sta-
tistical decision rule or (fuzzy) membership function.

A block diagram of a decision-theoretic pattern recognition system is given in Figure 5.

X1
Input Feature X2 Decision-making | Classification
— : or —
pattern | Interpretation xy | Classification

Fig. 5 Block diagram of decision-theoretic pattern recognition system

The feature vector X = [xl,xz,...,xN] representing the input pattern can be classified ac-

cordihg to the discriminant functions Dl(x), D2(x),..., Dm(X) where m is the number of pos-~

sible pattern classes. if D; (X) = lMax {Dk(X)} then X is classified as from the ith
=lyee0,m

class. Linear, piecewise linear and quadric discriminant functions are often used in prac-

tice. When a set of prototype or reference patterns can be selected, one for each class, we

can use the minimum-distance classification rule. Let {R1 R2""'Rm} be the set of refer-
14

ence patterns where Ri is the reference feature vector for the ith class. Calculate the
distance between an input feature vector X and Ry, k=1,...,m, X will be classified as in
the same class as Ri if the distance between X and Ry is the smallest.

Sometimes, a tree classifier can be used for efficient classification. At each node of
the tree classifier, only a small number of features needs to be used [28].

(C) Structural or syntactic approach [29]

In the structural or syntactic approach, a pattern is often represented as a string, a
tree or a graph of pattern primitives and their relations. A set of structural or syntax
rules (or a grammar) is used to characterize the pattern structure and to provide a compact
representation. The decision-making process is in general a syntax analysis or parsing pro-
cedure. Special cases include the use of similarity (or distance) measures between two
strings, two trees, or two graphs. A block diagram of a structural/syntactic pattern recog-
nition system is given in Figure 6.

Conventional parsing requires an exact match between the unknown input sentence and a
sentence generated by the pattern grammar. Such a rigid requirement often limits the appli-
cability of the syntactic approach to noise-free or artificial patterns. Recently, the con-
cept of similarity measure between two sentences and between one sentence and a language has
been developed. Parsing can be performed using a selected similarity (a distance measure or
a likelihood function), and an exact match becomes unnecessary. Such a parsing procedure is
called "error~correcting™ parsing.



strin
Input Primitive trees Structural | Classification
———{ Segmentation (and Relation) or Syntax -
pattern Recognition | or graph Analysis and /or
Interpretation

Fig. 6 Block diagram of syntactic pattern recognition system

VI. Application Examples

Two application examples are given in this section for illustrative purpose.

Example 1l: The SRI vision system [2] for the recognition of foundry castings uses a diode
array to obtain binary image of the parts. Since a given part can appear in a number of
different stable states, and since each stable state typically presents a different image,
it is treated as a different part to be recognized. Thus, even if only one kind of part
will present, the system still has to solve a multi-class recognition problem, with one
class for each stable state.

The seven shape features Xj,Xos..«sXy described in Section IV (A) are extracted from the

part image (Fig. 7). A binary tree classifier, as shown in Fig. 8, is design for recogni-
tion.
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Fig. 7 1Images of foundry castings and their boundaries (From Agin and Duda [1975])
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Fig. 8 Tree classifier for recognition of foundry castings (From Agin and Duda [1975])
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Fig. 10 Ten classes of industrial
parts (From Persoon and
Fu [1977])

Fig. 9 1Industrial parts and their thresholded images
(From Persoon and Fu [1977])

Example 2: Fourier descriptors have been suggested for recognition of industrial parts [63].
The visual information is obtained for a TV camera interfaced to a mini-computer. Each part
image is digitized into a 60x60 array of pixels with 128 gray levels (7 bits). The gray
level histogram of this array is computed and used to determine a threshold. This threshold
allow us to convert the image array into a binary array representing the silhouette of the
part (Fig. 9).

The Fourier descriptors (15 harmonics) are then computed from the part boundary and com-
pared with a set of reference Fourier descriptors. A minimum-distance classification rule
is used for the recognition of ten classes of industrial parts (Fig. 10). Overlapping parts
can be detected as follows: either the boundary obtained from overlapping parts does not
match closely with any one of the reference or training patterns or, in case it matches
closely, the area of the silhouette is not as expected from a single part. 1In such a case,
a robot arm will try to separate the parts.

VII. Concluding Remarks

We have briefly reviewed major robot vision techniques for machine part recognition. The
principal motivation of having vision for robot is increased flexibility and lower cost.
Due to speed requirement in a real time manufacturing process, at present only very simple
techniques have been actually applied. More sophisticated techniques can certainly be ap-
plied to the problems such as analysis of part image sequence and bin-picking [12]. Imple-
mentation of robot vision algorithms on microprocessors and VLSI architectures should be in-
vestigated particularly from the viewpoint of cost-effectiveness.
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