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FOREWORD

The first volume of Strategies and Tactics in Grganic Synthesis, edited
by Thomas Lindberg, was inspired by an article by Dr. 1. Ernest, of
the Woodward Institute, on the real story behind the late R. B.
Woodward's synthesis of prostaglandin. We learned that Nature did not
always do what R. B. Woodward told it to do!

Candor in explaining how one really reached one’s synthetic target
is a virtue not shared by most academic chemists when they publish in
learned journals. There are two reasons for this. One is that space restric-
tions discourage the presentation of negative, or misleading, experiments.
The second is that R. B. Woodward, and many others who have followed,
chose to publish as if all the steps in a synthesis had been so carefully
planned beforehand that the final product was bound to be obtained — .
provided, of course, that the effort applied was sufficiently diligent and
skillful. At the beginning, before the academic community realized that
long-planned Woodwardian syntheses were possible, this attitude was
stimulating to the advance of organic chemistry. However, now that so
many synthetic chemists are able to emulate the early Woodwardian
achievements, one must ask the question, Is it worth the effort? It is
worth the effort if new principles emerge—like orbital symmetry con-
trol, or new reactions such as Eschenmoser’s elegant photochemical
cyclization in the second synthesis of vitamin B,,, or new reagents. But
a synthesis, however long and difficult, which uses known principles,
known reactions, and known reagents can only contribute to chemistry
by accident. This is a costly way to be original. It is much more cost
effective to think more and do less.

This second volume of Strategies and Tactics in Organic Synthesis con-
tinues the same, healthy theme as the first. In showing more frankly
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how academic synthetic work is really done, an important service is
rendered to all chemists. Our friends in inorganic and physical chemistry
can also learn from these articles because the point of view of those out-
side organic chemistry is that because we pretend that organic synthesis
can be planned, it cannot be research anymore and therefore is not worth
doing.

An academic chemist who begins a long synthesis soon learns about
the importance of a high yield in each step. However, in presenting work
later, the yields are not always mentioned and, in particular, the overall
yield is not given. It can often be nearly zero. Fortunately, our friends
in industry are always conscious of the yield problem. Contact with the
real chemical life of industry helps the academic chemist to purge his
intellectual system of false pride. _

This second volume is as good, or better, than the first. I can strong-
ly recommend it to all who are interested in synthetic chemistry, and
especially to those who think that the subject is dull and uninteresting.

Derek H. R. BARTON
Texas AFM University
College Station, Texas
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]

It is indeed a pleasure to be writing the preface to the second volume
of Strategies and Tactics in Organic Synthesis. The theme of the second
volume is the same as that of the first: to give students a “behind-the-
scenes” look at organic synthesis from the perspective of outstanding
organic chemists. ‘

Students can easily get a mistaken impression of organic synthesis by
reading the primary journals—long syntheses of natural products look
easy and straightforward. Synthetic dead-ends, blind alleys, and dif-
ficulties are rarely mentioned, partly because of space limitations. As
both of these volumes illustrate, syntheses rarely turn out the way they
were initially planned. In reality, one can plan a reasonable, rational,
“paper” synthesis only to go into the lab and discover that the reactions
don't want to work the way they should. One then starts changing
variables —solvent, temperature, pressure, catalysts— until the reaction
is made to work. If the reaction refuses to work, the synthetic route has
to be modified. Perseverance is certainly a quality that organic chemists
should have.

I owe a special debt of gratitude to the contributors for making this
book possible. It is my special pleasure to welcome Amos Smith back
for an encore. I hope that readers find the second volume as interesting
and informative as the first.

THOMAS LINDBERG

8
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I. Introduction

At the onset of much of our work we have elected to select synthetic targets
which possess a significant or contemporary synthetic challenge and which
possess biological properties which merit further investigation. At the very
least we hope to develop or apply new synthetic methodology that is
especially suited for application in the total synthesis of the structure under
consideration and, concurrent with these efforts, to design and prepare
structurally related compounds which would permit us to address or define
the structural characteristics of the naturally occurring material that are
responsible for and/or potentiates the observed biological properties. These
latter considerations are facilitated if we or others have previously studied or
speculated on the agent’s chemical mechanism of action that is responsible for
the observed or expressed biological effects.

Streptonigrin (1),' lavendamycin (2),2 and streptonigrone (3)® are three
structurally and biosynthetically related antitumor antibiotics isolated from
Streptomyces flocculus, Streptomyces lavendulae, and an unidentified Streptomyces
species (IA-CAS isolate No. 114), respectively. Each possesses a character-
istic, highly functionalized 7-aminoquinoline-5,8-quinone AB ring system
and a fully substituted pyridyl C ring central to its structure. Consequently,
the effective assemblage of the pentasubstituted pyridyl C ring of 1-3
coupled with a divergent approach to the introduction of the streptonigrin/
lavendamycin quinoline-5,8-quinone AB ring systems was formulated ini-
tially as the key to the total synthesis of members of this class of naturally

1 Streptonigrin 2 Lavendamycin 3 Streptonigrone
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occurring antitumor antibiotics. Based largely on the work in progress in
our laboratories as well as information available from the extensive investi-
gations of Professors Sauer* and Neunhoeffer,* our approach to the construc-
tion of the pentasubstituted pyridyl component of the naturally occurrmg
materials was expected to be addressed with the implementation of in-
verse electron demand Diels—Alder reactions of electron-deficient hetero-
cyclic azadienes.

Streptonigrin was first identified and characterized in 1959, its structure
was correctly determined in 1963' using a combination of classical chemical
degradative studies coupled with the application of the then emerging
spectroscopic techniques of infrared, 'H NMR, and mass spectrometry, and
subsequently was confirmed in 1975 with a single-crystal X-ray structure
determination.'® Since the initial structure determination, streptonigrin has
been the subject of extensive synthetic, biosynthetic, and biological investi-
gations which have resulted from a continued interest in its confirmed
antimicrobial, cytotoxic, and antitumor properties.’> In no small part, the
synthetic challenges posed by the streptonigrin structure, which include its
concentrated array of reactive functionality and the presence of stable CD
biaryl atropisomers,'® investigations on the chemical mechanism by which
streptonigrin expresses its biological effects,*® efforts to define the essential
structural features required for observation of this activity,*” and revealing
biosynthetic investigations account for the continued interest in this struc-
ture.*® Information and work derived from the completed total syntheses®!°
of streptonigrin [Weinreb et al. (1980) and Kende et al. (1981); cited in Chart
I] and from the extensive preliminary investigations*'!"!2 of Cheng, Rao,
Lown, Kametani, Martin,'> Kende, Weinreb, and Cushman contributed
substantially in the planning and execution of our own efforts.'*

The structure identification of lavendamycin (2), which was disclosed in
1981,2 rested exclusively on extensive spectroscopic studies on a limited
supply of naturally occurring material which were guided by biosynthetic
considerations. It is a tribute to the advances in modern spectroscopic
techniques that lavendamycin was mmally and correctly identified with
the available naturally occurring material using principally 'H/!3C NMR
information, ultraviolet and infrared spectroscopy, and high-resolution mass
spectral exact mass determinations, guided correctly by prior biosynthetic
postulates for intermediates potentially involved in the biosynthesis of
streptonigrin.®!> Thus, in contrast to the earlier structure elucidation of
streptonigrin (1), classical chemical degradative studies played little appar-
ent role in the structure identification of lavendamycin. Unambiguous
confirmation of the proposed lavendamycin structure was accomplished by
subsequent total syntheses.'®!” Most notably, Kende’s approach to laven-
damycin, which has been concurrently pursued by the Hibino and Rao
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