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Preface

The exciting and rapidly growing area of graph theory is rich in theoretical
results as well as applications to real-world problems. In this edition of Graphs &
Digraphs, as in the first, our major emphasis is on the theoretical aspects of graph
theory, and we have included what we believe to be the most interesting and important
results in the field. In addition, however, we have introduced the reader to types of
problems that can be modeled by graphs and we have indicated efficient algorithms for
their solutions. In keeping with our belief that a background emphasizing theory and
proof techniques is indispensable for the student of graph theory, we have included
careful proofs that the algorithms do, in fact. accomplish what they claim. Exercises
reflecting the addition of these algonthms as well as a substantial number of new
exercises have been added.

A second major change in this edition is the integration of graph and digraph
theory. The material on digraph theory. self-contained in the first edition. is now
developed parallel to that of (undirected) graphs. This allows, for example. the max-
flow min-cut theorem to be introduced early in the text and then used to establish
results on connectivity and matching.

This text is intended for an introductory sequence in graph theory at the senior or
beginning graduate level. However. a one-semester course could easily be designed
by selecting those topics of major importance and interest to the students involved. To
facilitate such a choice in this edition, we have judiciously chosen a number of topics
to introduce and develop in the exercises rather than in the text itself. Three topics that
are introduced early in the text can be omitted with little effcct on the material that
follows. namely Section 2.4 on the Reconstruction Problem, Section 3.2 on n-ary
trees. and Sections 4.4-4.6 on embedding graphs on surfaces of positive genus.

It is a pleasure to thank a number of individuals who assisted us with this edition
in a variety of ways. The discussions we had with Farhad Shahrokhi on graph algo-
rithms were very useful to us, and we are most appreciative of the time and effort he
spent on our behalf. We are grateful for the suggestions made by Garry Johns, Paresh
J. Malde, Ortrud R. Oellermann, Robert Rieper, and Farrokh Saba.’The advice given
to us by reviewers of this edition was very helpfuil; we are delighted to thank Ruth A.
Bari, Ralph Faudree, Ronald J. Gould. Jerrold R. Griggs, F. C. Holroyd, Gary T.
Myers, and Richard D. Ringeisen. Our gratitude goes to° Margo Johnson for her |
consistently excellent typing. Finally. we thank the staff of Wadsworth & Brooks/Cole
Advanced Books & Software. particularly John Kimmel, for their interest in and
assistance with this edition.

Gary Chartrand
Linda Lesniak
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Chapter One

Graphs and Digraphs

In many disciplines we are faced with situations in which we want to find out
how or whether a finite number of objects are related. If the relation is
symmetric, we can model the situation by a graph. More generally, we can
model the structure by a digraph. Hence, graphs and digraphs occur naturally
and often. We begin our study with these two basic concepts.

1.1 Graphs

Many situations and structures give rise to graphs. Before we ofter a precise
definition of a graph, we present a few examples. . .

Assume that a California-based airline services several cities within
California as well as Reno and Las Vegas, Nevada. These cities are indicated
on the map shown in Figure 1.1(a).

This airline has several direct routes between certain pairs of these cities;
the flying patterns are illustrated in Figure 1.1(b). The diagramein Figure 1.2(a)
representing the cities serviced and the flying routes is a graph.

At times it is convenient to include additional information in a graph. For
example, we might want to know the cost of each direct route. These costs (or
weights) can be assigned tu the edges of Figure 1.2(a), producing the network
of Figure 1.2(b), where the labels a, b, and so on represent the costs.

By inspecting Figure 1.2, we can answer questions such as whether one
can fly from San Diego to Reno and, if so, which route is least expensive. Of
course, as graphs become more complex, solutions by inspection are no longer
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(a)

Figure 1.2 A graph and a network
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Section 1.1 Graphs 3

feasible. In Chapter 2 we will discuss an efficient means of finding a “*shortest
path” in any graph.

As a second example. assume that a business is expanding and plans to
add several new positions; namely, a draftsman, an engineer, a computer
programmer, a data analyst, and an assistant personnel manager. Seven
individuals apply for these five positions, some of whom have the qualifica-
tions for two or more of the positions. This situation can be represented by the
graph shown in Figure 1.3, where five points (denoted DRA, ENG. PRO,
ANL. and PER) are used to indicate the positions and seven points (1,2, ...,
7) are used to indicate the applicants. Each point on the top of the graph
represents an applicant, and each point on the bottom represents a position. A
line is drawn between two points if the person is qualified for that positicn. A
question that might be of interest is whether there are five individuals, from
among the seven, who can be hired to fill all five positions. In graph theoretic
terms, we are asking whether the set of jobs can be “matched’” to a subset of
the applicants. An algorithm that answers such questions will be discussed in
Chapter 8.

O
DRA ENG PRO ANL PER

Figure 1.3 A graph of jobs and applicants

As a last example, let us suppose that eight experimental chemicals (A,
B. ..., H) are to be stored in large (expensive) storage bins. Some chemicals
have the potential to interact with cach other and, consequently, should not be
stored in the same bin. This situation is illustrated in the graph of Figure 1.4,
where each chemical 's represented by a point and two points are joined by a
line if the corresponding chemicals should not be stored together. We might
ask: What is the least number of storage bins that are needed to store all eight
chemicals? This type of question is of particular interest to graph theorists. At
the present, the only known algorithms to solve problems of this type are very
inefficient, and many mathematicians believe that no efficient solution exists.
We will see in Chapter 10 an example of an efficient “‘heuristic” algorithm for
this problem; that is, an algorithm that describes a small, but not the least,
number of bins that will suffice.

-Each of the examples discussed so far was based on a collection of objects
(cities, people, jobs, chemicals), and relationships between certain pairs. These

¢



Chapter 1 Graphs and Digraphs

E

Figure 1.4 A chemical jnteraction graph

ideas are easily abstracted to produce the concept of a graph.

A graph G is a finite nonempty set of objects called vertices (the singular
is vertex) together with a (possibly empty) set of unordered pairs of distinct
vertices of G called edges. The vertex set of G is denoted by V(G), while the
edge set is denoted by E(G).

The edge e = {u, v} is said to join the vertices u and v. If e = {u, v} is an
edge of a graph G, then u and v are adjacent vertices, while u and e are
incident, as are v and e. Furthermore, if e, and e, are distinct edges of G
incident with a common vertex, then e, and e, are adjacent edges. It is con-
venient to henceforth denote an edge by uv or vu rather than by {u, v}.

The cardinality of the vertex set of a graph G is called the order of G and
is denoted by p(G), or more simply, p, while the cardinality of its edge set is
the size of G and is denoted by q(G) or q. A (p, q) graph has order p and size
q.

It is customary to define or describe a graph by means of a diagram in
which each vertex is represented by a point (which we draw as a small circle)
and each edge e =uv is represented by a hne segment or curve joining the
points corresponding to u and v.

A graph G with vertex set V(G) = {vy, v, ..., v,} can also be described
by means of matrices. One such matrix is the p X p adjacency matrix A(G) =
[a;], where .

{ 1 lf V,'Vl' € E(G)
=10 if vy ¢ E(G)

Thus, the adjacency matrix of a graph G is a symmetnc (0, 1) matrix having
zero entries along the main diagonal.



Section 1.1 Graphs 5

For example, a graph G is defined by the sets
V(G) = {v1, vz, v3, va} and E(G)={vivz, vav3, Vavs, Vave}.
A diagram of this graph and its adjacency matrix are shown in Figure 1.5.

Vi

01 00
G V2 s 1 0 1 1
01 01
0110
V3 Va

Figure 1.5 A graph and its adjacency matrix

The adjacency matrix representation of a graph is often convenient if one
intends to use a computer to obtain some information or solve a problem
concerning the graph. On the other hand, an adjacency matrix contains a great
deal of extraneous data—often many 0’s and twice as many 1’s as needed. This
unsatisfactory characteristic of the adjacency matrix is often alleviated by
inputting the graph in a variety, of other manners. For example, one could
input the edge set and the order, or one could input adjacency arrays, where
the vertices adjacent to a given vertex are listed. There are several other
possibilities. The manner in which a graph is input normally depends on the
problem to be solved and affects the algorithm and method chosen to solve the
problem.

Two graphs often have the same structure, differing only in the way their
vertices and edges are labeled or in the way they are drawn. To make this idea
more exact, we introduce the concept of isomorphism. A graph G, is
isomorphic to a graph G, if there exists a one-to-one mapping ¢, called an
isomorphism, from V(G,) onto V(G;) such that ¢ preserves adjacency; that is,
uv € E(G,) if and only if pudv € E(G). It is easy to see that “is isomorphic to”
is an equivalence relation on graphs; hence, this relation divides the collection
of all graphs into equivalence classes, two graphs being nonisomorphic if they
are in different equivalence classes. If G, is isomorphic to Gz, then we say G,
and G, are isomorphic and write G, = G.

Each of the graphs G;, i=1, 2, 3, of Figure 1.6 is a (6, 9) graph. Here,
G, and G, are isomorphic. For example, the mapping ¢: V(G,)— V(G2)
defined by

ovi=vy, Gva=v3, Pv3=vs, Gva=va, dvs=vs, OVe= Vs

_isan isomorphism. On the other hand, G, # G, since, for example, G; contains
three pairwise adjacent vertices whereas G, does not. Of course, G, # Gs.



“hapter 1 Graphs and Diguaphs

V1

| V2 )
Ve Va
G,
Gy: 2
Vs V3
Ve Vs Va Va
V1
Va V3
G
Vs Vg

Ve

Figure 1.6 Isomorphic and nonisomorphic graphs

If G is a (p, q) graph, then p=1 and 0$q$'(g) =p(p — 1)/2. There is
only one (1, 0) graph (up to isomorphism), and this is referred to as the trivial
graph. A nontrivial graph then has p=2.

Two graphs G, and G are identical, denoted G, = G,, if V(G,) = V(G2)

“and E(G,) = E(G,). Clearly, two graphs may be isomorphic yet not identical.
The graphs G; and G, of Figure 1.6 are not identical (even though V(G,) =
V(G,) and G, = Gy) since, for example, v,vs€ E(G;) and vyvs ¢ E(G2).

All 20 nonidentical graphs of order 4 and size 3. having vertex set

{1, 2, 3,4}, are shown in Figure 1.7. Among these graphs, there are only three

15 LI
SN U o 85 o O
S N Nl N
ISR Eor

Figure 1.7 The nonidentical (4, 3) graphs hoving vertex set {1, 2, 3,4}

2
1
3 2
3
3

3
4 2 i 3
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nonisomorphic classes of graphs. The total number of nonidentical graphs
having vertex set {1, 2, 3, 4} is 64; in fact, the total number of nonidentical
graphs of order p with the same vertex set V is 27?12 This is obvious for

p=1.1f p=2 and G is a graph with vertex set V(G), then for each pair u, v of

distinct vertices, therc aré two possibilities depending on whether uv is or is not
an edge of G. Since there are p(p — 1)/2 distinct pairs of vertices, there are
2P(P=1'2 gych nonidentical graphs G.

With the exception of the order and the size, the numbers that one
encounters most frequently in the study of graphs are the degrees of its
vertices. The degree of a vertex v in a graph G is the number of edges of G
incident with v. The degree of a vertex v in G is denoted degg v or simply deg
v if G is clear from the context. A vertex is called odd or even depending on
whether its degree is odd or even. A vertex of degree 0 in G is called an
isolated vertex and a vertex of degree 1 is an end-vertex of G. In Figure 1.8, a
graph G is shown together with the degrees of its vertices.

2 3 4 i
/\s ;E I :
] 1 3 5 2

Figure 1.8 The degrees of the vertices of a graph

Observe that for the graph G in Figure 1.8, p=9 and g = 11, while the
sum of the degrees of its nine vertices is 22. The fact that this last number
equals 2¢ for the graph G is not merely a coincidence. Every edge is incident
with two vertices; hence, when the degrees of the vertices are summed. cach
edge is counted twice. We state this as our first theorem, which, not so
coincidenially, is sometimes called “The First Theorem of Graph Theory™.

Theorem 1.1 Let G be a (p, q) graph where V(G)={v,, vo, ....v,}. Then

»
E deg v;=2gq.

[

This result has an interesting consequence.

Corollary 1.1 In any graph, there is an even number of odd vertices.

Proof

Let G be a graph of size g. Also, let W be the set of odd ver.’'ces of G and let
U be the set of even vertices of &. By Theorem 1.1,
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E deg v= Z deg v + Zdeg v=12q.

ve (L) e W vel/

Certainly, £,.p deg v is even; hence I, w deg v is even, implying that [W] is
even and thereby proving the coroilary. W

Frequently, a graph under study is contained within some larger graph
also being investigated. We consider several instances of this now. A graph H
is a subgraph of a graph G if V(H) CV(G) and E(H)C E(G); in such a case,
we also say that G is a supergraph of H. If G and H are graphs, not all of
whose vertices are labeled, then H is also considered to be a subgraph of G if
any unlabeled vertices can be labeled so that V(H) C V(G) and E(H) C E(G).
If H is a subgraph of G, then we write HCG. '

The simplest type of subgraph of a graph G is that obtained by delating a
vertex or edge. If ve V(G) and |V(G)| =2, then G —v denotes the subgraph
with: vertex set V(G)— {v} and whose edges are all those of G not incident
with v; if e € E(G), then G — e is the subgraph having vertex set V(G) and edge
set E(G)— {¢} The deletion of a set of vertices or set of edges is defined
analogously. These concepts are illustrated in Figure 1.9.

v

(;: e G --v: G - e

4 o

Figure 1.9 The deletion of an element of a graph

If u and v are nonadjacent vertices of a graph G, then G +f. where
f=uv, denotes the graph with vertex set V(G) and edge set E(G)U{f}.
Clearly, GC G +f. .

We have seen that G — e has the same vertex set as G and that G has the
same vertex set as G + f. Whenever a subgraph H of a graph G has the same
order as that of G, then H is called a spanning subgraph of G.

Among the most important subgraphs we shall encounter are the
“induced subgraphs”. If U is a nonempty subset of the vertex set V(G) of a
graph G, then the subgraph (U) of G induced by U is the graph having vertex
set U and whose edge set consists of those edges of G incident with two
elements of U. A subgraph H of G is called vertex-induced or induced, denoted
H< G, if H= (U) for some subset U of V(G). Similarly. if F is a nonempty
subset of E(G), then the subgraph ( F) induced by F is the graph whose vertex
set consists of those vertices of G incident with at least one edge of F and
whose edge set is F. A subgraph H of G is edge-induced if H= (F) for some
subset F of E(G). It is a simple consequence of the definitions that every
induced subgraph of a graph G can be obtained by removing vertices from G
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while every subgraph of G can be obtained by deleting vertices and edges.
These concepts are illustrated in Figure 1.10 for the graph G, where

V(G)= {vl’ Va, Vi, V4, Vs, v()}, U= {Vl, Va, VS}, and F= {V]V4, V2V5},

Vi vy vy
v
Ve va V2 :
Vs Ov,
Vs Vs
Vg Va
G W N

Figure 1.10 Vertex-induced and edge-induced subgraphs

The reader should be aware of possible confusion between nonisomor-
phic and nonidentical subgraphs. For example, in graph G, of Figure 1.6, how
many subgraphs of Gs have three vertices and three edges? The answer is
obviously “two”, since what is certainly desired here is the number of non-
identical such subgraphs. The reader could incorrectly give an answer of “one”
here, interpreting the question as the number of nonisomorphic such subgraphs.
Hence the reader must consider carefully the context in which the question is
poseu.

There are certain classes of graphs that occur so often that they deserve
special mention and in some cases, special notation. We describe the most
prominent of these in this section.

A graph G is regular of degree r if for cach vertex v of G, deg v =r; such
graphs are also called r-regular. The 3-regular graphs are referred to as cubic
graphs. A graph is complete it every two of its vertices are adjacent. A
complete (p, ¢) graph is therefore a regular graph of degree p — 1 having
g=p(p—1)2; we denote vns praph by K. In Figurc 1.11 are shown all
(nonisomorphic) regular graphs with p= 4, including the complete graph
Gy= K.

The complement G of a graph G is the graph with vertex set V(G) such that
two vertices are adjacent in ¢ f and only if these vertices are not adjacent
in G. Hence. if G is a (p. ¢) graph, then Gis a (p, g) graph, where g + g=(%).
In Figure 1.11, the graphs Gy and G, are complementary, as are G, and G,.
The complement l?, of the complete graph K, has p vertices and no edges and
is referred to as thc empty graph of order p. A graph G is self-complementary if
G=G.

A graph G is n-partite, n= 1, if it is possible to partition V(G) into n
subsets V,, V,, ..., V, (called partite sets) such that every element of E(G)
joins a vertex of V; to a vertex of V;. i#j. If G is a l-partite graph of order p,

then G=K,. For n=2, such graphs are called bipartite graphs; this class of
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Gy: Gy

Figure 1.11 The regular graphs of order 4

graphs is particularly important and will be encountered many times. In Figure
1.12, a bipartite graph G, is shown; a second graph G,, identical to G,, ‘s also

~given to emphasize the bipartite character of G,. If G is a regular bipartite

graph with partite sets V, and V,, then |V,| =|V,| (see Exercise 1.10; also see
[ACLO1]).

” Va Vs vy vy V3 Vs Va
Gy l ‘ / Gy: W
A - ’ ’
5] V3 Ve Va2 Va Ve

Figure 1.12 A bipartite graph .

A complete n-partite graph G is an n-partite graph with partite 'sets V,,
V,. ..., V, having the added property that if ueV; and veV,, i#j, then
uv e E(G). If |V;| = p;, then this graph is denoted by K(p;, p2, ..., pn). (The
order of the numbers p,, p, ..., p,is not important.) Note that a complete n-
partite graph is complete if and only if p, = 1 for all i, in which case it is K,,. If
p; =t for all i, then the complete n-partite graph is regular and is also denoted
by K,,(,) ThllS K,,(])— K

A complete bipertite graph with partite sets Vl and V,, where |V,|=
and |V,| =n, is then denoted by K(m, n). The graph K(1, n) is called a star

There are many ways of combining graphs to produce new graphs. We
next describe some  binary operations defined on graphs. This discussion
introduces notation that will prove very useful in giving examples. In the
following deﬁmtxons we assume that G, and G, are two graphs with disjoint
vertex sets.



