|

Essentials of Ralph M. Stair, Jr.

BASIC Programming Ralph E. Janaro

Essentials of BASIC Programming

RALPH M. STAIR, JR.
The Florida State University

RALPH E. JANARO

Clarkson College of Technology

1984 o Revised edition

RICHARD D. IRWIN, INC.
Homewood, lilinols 60430

© RICHARD D. IRWIN, INC,, 1981 and 1984

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior
written permission of the publisher.

ISBN 0-256-02993-8
Library of Congress Catalog Card No. 83-81773

Printed in the United States of America

1234567890ML 10987654

Preface

The purpose of this text is to present the fundamentals of BASIC
programming. Although this text is small and inexpensive, it covers
major statements that can be found in books costing twice as much.
This book has been designed to be used as a supplement to Principles
of Data Processing by Stair. It can also be used with other books on
computers and data processing or by itself for a course in BASIC pro-
gramming.

The material has been organized into chapters that flow logically
from one topic to the next. Before any new statement is introduced,
students are shown why the statement is important and the types of
problems that the statement can solve. This is followed by a clear ex-
planation of the statement and one or more examples. In addition,
each chapter contains several applications that reveal how a particular
statement or a group of statements can be used to solve useful and
realistic problems. Each chapter contains a number of questions. Each
question has been designed to test a student’s understanding of a par-
ticular statement or concept.

We would like to thank Claude McMillan and Robert Fetter for
their comments and suggestions. In addition, we would like to ac-
knowledge the support of Bill Anthony, the Department of Manage-
ment, and the College of Business at Florida State University.

RMS
RE]

Contents

Introduction to program and application development 1

Preprogramming activities (planning): Requirements. Analysis. Pro-
gramming. Post-programming activities: Testing. Implementation.

2. Introduction to BASIC 12
Advantages of BASIC. Writing computer programs: Learning how to
write BASIC programs. About making mistekes. Spaces within a line.
Correcting and running your program using a terminal.

3. Fundamental concepts in BASIC 20
Numbers. E notation. Variables. Predefined functions. Expressions.
Basic statements and line numbers. REM.

4. Writing simple programs with END, PRINT, and LET 27
END. PRINT. LET. A possible error: Undefined variables.

5. Writing realistic and useful programs with READ, INPUT,

GO TO, IF, and ON—GO TO 41
READ and DATA statements. Input. GO TO. [F. ON—GO TO.

6. Gateway to effective and efficient programming with
FOR—NEXT and subscripted variables 54
FOR and NEXT. RESTORE. Subscripted variables. DIMENSION.

7. Some additional features of BASIC including string variables,
PRINT USING, TAB, and RND 73
String variables and constants. PRINT USING. TAB. Random num-
bers.

8. Using subroutines and user-defined functions with DEF
and GO SuUB 85
DEF. GO SUB—RETUEN.

9. Matrix operations with MAT, READ, INPUT, PRINT, TRN, INV,

IDN, and more 91
MAT statements. CON, ZER, IDN, TRN, and INV.

10. Data files with FILES, SCRATCH, RESTORE, READ, WRITE,
and IF 100
Creating data files. The use of data Ffiles.

Index 107

xi

1

Introduction to program and
application development

PREPROGRAMMING
ACTIVITIES
(PLANNING)

All of our lives have been altered as a result of the increased use of
computer systems. Your checking account, phone bill, magazine sub-
scriptions, and student records are examples. Unfortunately, at one
time or another most of us have been victims of mistakes that occa-
sionally occur in computer systems. It is unknown how many millions
of dollars have been lost through these errors by companies of all sizes
as well as governmental and nonprofit agencies at all levels, but the
amount is large. You may be saying to yourself, “That cursed com-
puter did it again,” but these problems are not normally the fault of
the computer equipent. You would not blame a hammer for a poorly
driven nail, or a mixing bowl for a cake that had a horrible taste, and
you should not blame the computer because you received the wrong
phone bill or no magazine this month, Like the hammer or the mixing
bowl, the computer is a tool—a tool we use to help us process data.
The success or failure of a computer system to produce meaningful
results does not, in general, depend on the computer equipment. It
depends on the success or failure of people to use this electronic tool
properly.

A computer program is the means by which people can control the
computer to produce meaningful and beneficial output, but writing
successful computer programs is not an easy task. How to write suc-
cessful programs will be outlined in this chapter. To begin, we will
look into what should be done before a program is written.

Some programming books lead you to believe that very little or
nothing has to be done before introducing a program into a computer
system; you just write the program on the back of an envelope or on a

1

2 / Chapter1

FIGURE 1-1
Qutput requiremeants

scrap piece of paper and then run it on the computer. Doing this for a
program of any size would be like sketching a house on a soiled place
mat or napkin at a restaurant and then beginning to construct the
house without any blueprints or detailed plans. In both cases, the
chances of success are small indeed.

Requirements

Computer programs are written because there is a problem to be
solved or a need to be satisfied. Perhaps a medical clinic needs tighter
controls on unpaid bills, or the police department has a problem in
obtaining a fast and complete list of possible suspects for a crime,
given partial descriptions such as a scar, foreign accent, nervous
twitch in the left eye, hair color, height, and so on. Once the problem
or need has been identified, the reports or information desired from
the computer system, termed the output requirements, and the data
needed to produce these reports, termed the input requirements,
should be completely specified.

Requirements for Sound System, Inc. The general manager of
Sound System, Inc., a producer of tweeters, midranges, woofers,
horns, crossover systems, and other speaker parts, is concerned with
rising payroll costs. After discussing the problem with the data proc-
essing department, the manager decided that a report should be pre-
pared by the computer at 8:30 A.M. every Tuesday. The report should
list all employees whose gross pay exceeded $400G for the previous
week. To detail these needs to the data processing department, the
general manager has drawn up a sample of the report that is to be
generated by the computer system. It appears in Figure 1-~1. This re-
port is, then, the output requirement for this application.

EXCEPTION REPORT
Prepared for B. Render, Generol Manager

Employee No. Hours Rate Gross
1222 60 7 420
1225 50 10.10 505

The supervisors for the above employees should be consulted.

TABLE 1-1
Input requirements

Introduction to program and application development / 3

Now that the output has been specified, what input data is needed,
and where is the data stored? Usually the data will be stored on disk,
tape, or computer cards. We will assume that the data is already on
computer cards from another program that prints the weekly pay
checks; the last data card contains three zeros separated with commas
to signify that there is no more data. Sample data appears in Table 1-1.

Required Employee
;ara number Hours Rate
Variables — N H A
to be used
Sample 1000 DATA 1222, 60, 7
DATA e~ 1001 DATA 1223, 40, 5
statements 1002 DATA 1225, 50, 10.10
9000 DATA 0, 0, 0
Analysis

Once the output and input requirements have been determined, the
next step is to develop detailed plans that will be used in writing the
program. Like a blueprint for a house, flowcharts are used in specify-
ing how the computer program is to be written or constructed. This
analysis also reveals how the input data is to be processed to get the
desired reports.

Analysis for Sound System, Inc. The first step is to develop a
flowchart for the application. Some of the symbols used in application
flowcharting are on page 4. A complete set of symbols used in applica-
tion and program flowcharting can be drawn with the aid of the
template shown in Figure 1-2.

The purpose of an application flowchart is to use symbols to give a
general picture of what functions the computer system should per-
form. The application flowchart reveals how many programs are to be
written, what reports or documents are to be produced, and the form
and source of the input data.

The application flowchart for Sound System, Inc., is straight-
forward. The program should read data from a card file and print a
document containing a list of all employees earning over $400 per
week. See Figure 1-3.

The application flowchart in Figure 1-3 gives an overall picture of
the application. But how should the program be designed and writ-
ten? We must analyze the exception report program in more detail.
Like the application flowchart, the program flowchart uses symbols to
describe computer actions. Some of these symbols are on page 5.

/

Chapter 1

Card file

Direct access file (such as the
disc)

P:ocess or COmprET program

Document (such as hard copy
from computer system)

JUHL

Display (such as display from
a CRT)

FIGURE 1-2
Template for drawing symbols used in application and program flowcharting.

QVD@U@\\
ﬁD»Z«[DQOQ
oUL) o)

Source: This material i_s reproduced with permission from American National Standard X3.5—1970. ©
1970 by the American National Standards institute. Copies may be purchased from the American National
Standards Institute, 1430 Broadway, New York.

J

FIGURE 1-3
Application flowchart for
Sound System, Inc.

Introduction to program and application development

Employee
master file

—

\

Exception
report
program

Exception

report

Input data described
in Table 1-1

Program which has yet
to be written

Report described
in Figure 1-1

START and END

(beginning or end of analysis)

READ and PRINT
(all input and output)

LET

(all processing)

IF
{atl decisions)

FOR - NEXT
(loops = discussed in
later chapter)

A connector

/

5

6 [Chapter 1

PROGRAMMING

Now, the next step is to use these symbols to construct a program
flowchart. But how is this done? One approach is to think about how
you would generate the exception report by hand, using pencil and
paper. Here is what you might do:

Start the analysis.

Print the headings for the exception report,

Read N, H, R (the employee number, hours worked, and rate).

Is N = 0? (When N is 0, there is no more data.)

a. No-—go to the next statement, which is number 5.

b. Yes—go to statement 8, which prints the final message.

Let G be equal to H times R. This calculates the gross pay.

Is G less than or equal to $400 for this employee?

a. Yes—go to statement 3 and process another employee.

b. No—go to the next statement, which is number 7.

7. Print N, H, R, G. (Print the employee number, hours, rate, and
gross pay.) Then go to statement 3 and process another employee.

8. Print the final message, which is “THE SUPERVISORS FOR THE
ABOVE EMPLOYEES SHOULD BE CONSULTED.”

9. End the analysis.

o

> o

You may have done this in a different manner, but the results would
have been the same. Now, we will develop the program flowchart. For
your convenience, the above numbers have been included (see Figure
1-4).

The flowchart in Figure 1-4 graphically displays the same infor-
mation as described above. After the headings such as “EXCEPTION
REPORT” are printed, N, H, and R are READ. If N = 0, then there
are no more data, and the program stops after printing a brief mes-
sage. Otherwise gross pay, G, is calculated, and checked to see if it is
greater than 400. If G is greater than 400, N, H, R, and G are printed
as requested by the general manager, after which the program in-
structs the computer to loop back and process the data for the next
employee. Of course, if G is not greater than 400, the program in-
structs the computer to loop back to process the data for the next em-
ployee without any printing.

Writing the program is the next step. Because this will be the sub-
ject of the following chapters, a detailed discussion will not be given
here. It should be mentioned, however, that the program should be as
simple and as straightforward as possible. This will make modifying
the program later, if it is needed, easier and less confusing.

The program for Sound System, Inc. Using all the documents
developed in the preprogramming steps, a programmer in the data
processing department was able to write the necessary program. The
program is shown on page 8.

FIGURE 1-4
Flowchart for Sound
System, Inc.

introduction to program and application develop'nenz

PRINT
heading

\
1[
REA
N,

PRINT 8
final
message

It must be stressed that you are not expected to understand this pro-
gram. It is only given here to show the natural progression of develop-
ing a successful computer program. As you look at the instructions in
the program, however, you should note the similarity between it and
the program flowchart previously given. You should also recognize the
orderly progression from the written instructions, to the flowchart, to
the program itself.

8 [/ Chaptert

PROGRAM 1-1

POST-
PROGRAMMING
ACTIVITIES

OUTPUT FROM
PROGRAM 1-1

10 PRINT “EXCEPTION REPORT"
20 PRINT "PREPARED FOR B. RENDER, GENERAL MANAGER"

30 PRINT

40 PRINT “EMPLOYEE NO.","HOURS","RATE","GROSS"
50 READ N,H,R

60 IF N = 0 THEN 110

JOLET G =H* R

80 IF G< = 400 THEN 50

90 PRINT N,H,R,G

100 GO TG 10

110 PRIMT “THE SUPERVISOR FOR THE ABOVE"
120 PRINT "EMPLOYEES SHOULD BE CONSULTED"
1000 DATA 1222,60,7

1001 DATA 1223,40,5

1002 DATA 1225,50,10.10

9000 DATA 0,0,0

9999 END

Many mishaps and computer system errors are caused by not com-
pletely performing postprogramming activities. The following activi-
ties are easy to perform, and they can prevent untold problems.

Testing

Every statement must be tested to assure that there are no program-
ming mistakes (called “bugs”). Test data must be developed that will
test every part of the program. If this is not done, a mistake in a pro-
gram may go undetected for months. You may hear someone from the
data processing department screaming with panic, “The program de-
veloped a ‘bug’ today.”

Of course, the mistake didn’t magically develop in the program af-
ter it was written. The mistake was always in the program, but the
part of the program containing the mistake may never have been
tested. Thus it is important to develop test data that will test every
statement in the program.

Program testing for Sound System, Inc. The following output
was obtained from the program.

? INITIAL PART OF STATEMENT NEITHER MATCHES A STATEMENT KEYWORD NOR HAS
A FORM THAT IS LEGAL--CHECK MISSPELLING IN LINE 110

As seen from the output, some type of mistake has been made in
line 110. Look at line 110 in Program 1-1. The keyword “PRINT" has
been misspelled. This type of error is a grammatical mistake, which
results in an error message. When line 110 is retyped and the mistake
corrected, the program gives the following output from the computer.

As you can see, there is still something wrong with the computer
program. The headings should be printed only once. Look at line 100
in the program, and compare it to the flowchart. Do you see the prob-
lem? Line 100 directs the computer to GO TO 10, where the headings

OUTPUT FROM
PROGRAM 1-1

PROGRAM 1-2

Introduction 1o program and application development / 9

READY
RUNNH

EXCEPTION REPORT
PREPARED FOR B. RENDER, GENERAL MANAGER

EMPLOYEE NO. HOURS RATE GROSS
1222 60 7 420

EXCEPTION REPORT

PREPARED FOR B. RENDER, GENERAL MANAGER

EMPLOYEE NO. HOURS RATE GROSS
1225 50 10.1 505.

EXCEPTION REPORT

PREPARED FOR B. RENDER, GENERAL MANAGER

EMPLOYEE NO. HOURS RATE GROSS
THE SUPERVISOR FOR THE ABOVE
EMPLOYEES SHOULD BE CONSULTED

are printed. Line 100 should be GO TO 50 to process another em-
ployee. When this correction is made, the program will work. See
Program 1-2.

Reflect a moment. If the test data did not include an employee
whose gross pay exceeded $400, this error would not have been de-
tected because the statement in line 80 would always send the com-
puter to line 50, and the statements in lines 80 and 90 would not have

10 PRINT "EXCEPTION REPORT"
20 PRINT “"PREPARED FOR B. RENDER, GENERAL MANAGER"
30 PRINT
40 PRINT "EMPLOYEE NO.","HOURS","RATE","GROSS"
50 READ N,H,R
60 IF N = 0 THEN 110
LET 6 * R

70 =

80 IF G< = 400 THEN 50
90 PRINT N,H,R,G

100 60 70 50

110 PRINT “THE SUPERVISOR FOR THE ABOVE"
120 PRINT “EMPLOYEES SHQULD BE CONSULTED™
1000 DATA 1222,60,7

1001 DATA 1223,40,5

1002 DATA 1225,50,10.10

8000 DATA 0,0,0

9999 END

READY
RUNNH

EXCEPTION REPORT
PREPARED FOR B. RENDER, GENERAL MANAGER

EMPLOYEE NO. HOURS RATE GROSS
1222 60 7 420
1225 50 10.1 505

THE SUPERVISOR FOR THE ABOVE
EMPLOYEES SHOULD BE CONSULTEDR

10 / Chapter 1

SUMMARY

been tested. Thus it is important to prepare test data that tests every
statement in the program.

implementation

The final step is to phase in the use of this program to produce the
exception report that is to be presented to the general manager every
Tuesday morning. If this report is now being produced manually, then
both the manual report and the computer-prepared report should be
run together in parallel until everyone is confident that the computer
is preparing the report as expected. Then the manual report may be
phased out; the new computer program is now running smoothly and
providing the desired information to the general manager.

Great speeches have been scribbled on the back of envelopes, but,
in general, successful computer programs require more planning.
Steps in writing a program are like links in a chain. If one is weak or
absent, there will be trouble. In computer programming, what can go
wrong will go wrong. In this chapter, the minimum requirements for
building a successful computer program have been outlined. These ac-
tivities were:

Determine the output requirements.

Determine the input requirements.

Conduct the analysis and construct a flowchart.
Write the program.

Test the program and make appropriate corrections.
Implement the program.

SOh LN

You may have been wondering what should be done when several
programs interact, and the output from one becomes the input to an-
other. The procedures outlined in this chapter should be logically ex-
panded to analyze the entire system of programs. Starting with defini-
tion of output requirements and ending with implementation, the en-
tire system of programs should be considered in addition to each
individual program in the system. The procedures outlined do not
substantially change when more complex applications are developed.

Sound System, Inc. summary. To bring meaning and realism to
the procedures mentioned in this chapter, an application for Sound
System, Inc., was examined. It was assumed that the data was on
computer cards and that this data was used with a different program
to produce weekly paychecks. Of course, the data could be on disk or
magnetic tape, and the program discussed in this chapter may be one
of several programs that comprise a system of programs that write the
checks and produce quarterly reports, W-2 forms, and other reports.

1t should also be mentioned that special forms exist to help in spec-

QUESTIONS

Introduction to program and application development [/ 11

ifying output and input requirements, developing flowcharts, and
writing computer programs.

1-1.
1-2.
1-3.
1-4.

What is the cause of most computer-related mistakes and problems?
What is involved in determining output requirements?
What is the purpose of testing? How should it be accomplished?

Once a new program has been written and tested, should the oid
program that it replaces be immediately abandoned? Why or why
not?

2

introduction to BASIC

ADVANTAGES OF
BASIC

PROGRAM 2-1

12

One reason that BASIC is so popular is its conversational nature. A
BASIC program is very similar to the instructions you would write for
a person. BASIC makes communicating with a computer natural,
simiple, and straightforward.

Another advantage of BASIC is its many built-in conveniences.
Handling a large table of numbers can be very difficult in other pro-
gramming languages. In BASIC you can command the computer to
print a table of more than 100 numbers or names with one simple
instruction. In addition, newer versions of BASIC have excellent file-
handling capabilities,

To get you started, here are some BASIC computer programs. Do
not try to understand the details. Relax and try to get the flavor of
programming.

Application 2~1. BASIC can be used like a hand calculator. If
you want to find the circumference of a circle with a diameter of four
inches, you multiply 4 times a constant =, which is 3.14159. The fol-
lowing BASIC program will make this calculation:

Application 2-2. You can also instruct the computer to read data

This is the {10 LET C=4*3.14159 RUNNH means

type. i
you typ RUNN heading.

You type this,
This is the / 125664

output from

the computer.
It is printed
after you type
RUNNH and hit

the return key .

