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FOREWORD TO THE ENGLISH EDITION

Cancer research has for a long time, and for various reasons, attracted the atten-
tion of chemists, physicians and mathematicians, but the greatest contributions
have come from physicians and biologists.

In-depth studies of oncological problems in various scientific disciplines have
acquired international importance.

In the USSR, investigations of kinetics and physico—chemical (especially free
radical) mechanisms of carcinogenesis, tumour growth, and the molecular biology of
chemotherapy, are very well developed. Advances have been made in techniques for
objectively assessing cancer treatment statistically with the aid of computers.
This research parallels that of the Chester Beatty Research Institute in London,
the Paterson Research Laboratory at the Christie Hospital in Manchester and in many
similar institutions.

This monograph was published in the USSR in 1977. 1In the following three years,
Soviet research paid great attention to the fundamental principles of creating new
effective antitumour drugs. The basic laws of pharmacokinetics, the mathematical
investigations of the quantum kinetics of antitumour activity and drug structures,
and the results of biochemical and biophysical investigations underlie these prin~
ciples.

A survey of these investigations was presented in the author's lecture 'Physical,
Biochemical and Biophysical Bases for Creation of New Effective Anticancer Agents'
at the 28th Congress of the International Union of Pure and Applied Chemistry
(IUPAC) in Helsinki in August 1979. The lecture was published in the journal
Pure and Applied Chemistry and constitutes an addition to this monograph.

I hope that the publication of the English edition of the monograph will be
welcomed by our colleagues and will assist our mutual efforts for the solution of
the most important current problems in oncology.

Professor N. M. Emanuel
Member of the Academy of Science



FOREWORD

Clinical reactions are subject to the laws of kinetics and thus kinetic studies are
of great importance in many fields of natural science. While physical kinetics and
chemical kinetics have already become independent scientific fields, the kinetics

of biological processes are less well understood. However, knowledge of molecular
mechanisms and of the general quantitative principles of the development of biol-
ogical processes with time is essential for further progress of biology and medicine.

In the past two decades this has become so obvious that mathematicians, physicists,
chemists, biologists and physicians from many countries have joined forces to solve
biological and medical problems.

Cancer is one of the most formidable problems of humanity; any advance here is of
extreme importance. Systematic studies of the kinetic principles and molecular
(mostly free radical) mechanisms of malignant growth, as well as the search for
rational principles of approach to the creation of efficient anticancer drugs were
started at the Institute of Chemical Physics in the USSR in 1957.

These problems are investigated now by a team of researchers at the Department of
Kinetics of Chemical and Biological Processes in the Institute of Chemical Physics
in the USSR.

Numerous studies on the kinetics and mechanisms of tumour growth have yielded
results of theoretical and practical value. Several chemotherapeutic drugs
proposed by this Department have been clinically effective.

This monograph develops the principles of the kinetics of experimental malignant
growth. The molecular mechanisms of chemotherapy and certain problems of carcino-
genesis and biochemistry are discussed.

The first chapter is theoretical. It introduces the notion of a true average
kinetic curve for tumour growth and discusses the principles for obtaining experi-
mental kinetic curves. Various analytical functions for the approximation of
experimental kinetic curves are given. These functions are obtained by integration
of the population growth equation under certain simple assumptions about the time
dependence of the specific rate of growth. Attention is given to a large set of
exponential and power functions, and Gompertz, Bertalanffy and logistic functioms,
the dependences for curves with an extremum (polynomial exponents), etc.
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These dependences are widely used in describing kinetic curves that have to be
applied in experiments. Simple equations for the kinetic survival curves are also
given. The procedures of analytical functions by means of their linearization are
described. This section is included for convenience of readers in order to save
them from the need to resort to special handbooks on regression analysis.

A whole section is devoted to quantitative criteria used in estimating the effec-
tiveness of antitumour drugs. Many are proposed for the first time. It is
expected that the use of these criteria in specific experimental research will

show the expediency and advantages of their application, in particular in standard-
izing the experiments conducted in different laboratories.

The second chapter contains experimental data on tumour growth from the USSR and
elsewhere. The general treatment of the experimental results and plots, using the
analytical functions given in the first chapter, is described. This seems to be
the first systematic survey of data on the kinetics of tumour growth. This chapter
contains valuable reference material on over 40 tumour models.

The third chapter deals with kinetic analysis of the results obtained by various
treatments of tumours (chemotherapy, surgery and combined treatment). Drug effect~
iveness is estimated with the same kinetic criterion — the effectiveness coeffic-—
ient.

The fourth chapter is a survey of pharmacokinetic methods of major regularities
connected with general problems of cancer chemotherapy, in particular with kinetic
analysis of the behaviour of certain antitumour drugs in the body.

The molecular mechanisms of chemotherapy discussed in the fifth chapter are con-
sidered only from the standpoint of the biological action of the new antitumour
drugs developed at the Department of the Kinetics of Chemical and Biological
Processes of the Institute of Chemical Physics. These are inhibitors-antioxidants
(phenol compounds), alkylnitrosoureas and diazoketones. The alkylnitrosoureas are
of particular interest because of their interaction with nucleic acids. In study-
ing the mechanism of the action of diazoketones, attention was paid to their
effect on biosynthesis. The inhibitors—antioxidants were considered in terms of
the free-radical mechanisms of their action.

In the last fifteen years the role of free radicals in the mechanisms of carcino-
genesis and tumour growth have become one of the most important developing trends
in the biophysics of cancer; this field is still at the stage of phenomenological
description. The kinetic approach allowed the solution of many problems and
enabled the finding of certain general patterns (e.g. the change in content of

free radical species during the initial period of tumour growth, the step-wise
nature of changes in the free radical content during chemical carcinogenesis, etc.).
The limiting factor for the development of these studies is the absence of methods
for identification of the individual nature of paramagnetic species exhibiting EPR
signals. These problems are discussed in the sixth chapter.

The seventh chapter deals with the kinetic analysis of biochemical shifts occurring
in tumour tissues. It is suggested that knowledge of the quantitative kinetic
parameters characteristic of these shifts and of various therapeutic treatment
effects can help in developing methods of strictly controlled therapy.

The last chapter contains a survey of the present data on disturbance of structure
and biosynthesis of informational macromolecules occurring in tumour growth.

These are new fields for effective application of kinetic methods; their discus-
sion in the monograph seems to be expedient.
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CHAPTER 1

THE KINETICS OF TUMOUR GROWTH

Theoretical and experimental studies of tumour growth and of the accompanying
biochemical and biophysical changes are concerned with general patterns, the nature
and mechanism of a process, the setting up of criteria for evaluation of the
effectiveness of therapeutic drugs, and with a rational search for new principles
in the prophylaxis, diagnosis, and medical treatment of cancer.

Kinetics, as a science, deals with the development of various (physical, chemical
and biological) processes in time: it is of particular value for investigating
these problems. Tumour growth progresses regularly in time; kinetic studies have
become important in experimental and clinical oncology. A formal mathematical
approach, the creation of tumour growth models and kinetic analysis of these results
concerning the rules for development of malignant processes and the mechanisms of
drug action are required. Mathematical description of the kinetic regularities
yields numerous parameters that can be used to model these processes and computer
techniques can be used to evaluate the vast amount of data generated.

1. KINETIC CURVES

Kinetic curves are the most usual means of representing the results of kinetic
studies. Besides the two definitions: 'kinetics' and 'kinetic curve', a general
one, namely 'dynamics', is often used in biology and medicine.

A kinetic curve is a graphical representation of changes in a certain value, F,
characteristic of the process development in time. This value denotes any measur-—
able property of the system studied and the result of measurements is given as a
numerical value corresponding to each fixed moment of time.

Values of a different mathematical nature are used in plotting kinetic curves.
Certain values continuously change with time (are continuous time functions),
others can change only discretely (discrete time functions). The volume, diameter,
area or weight of a solid tumour can serve as an example of continuous time
functions of tumour development. A discrete function is, for instance, the change
in number, N, of tumour cells. It will obviously be represented by integer numbers

only. Naturally, the discrete number of changes in ¥ will be important only for
low N values.

Kinetic studies of tumour growth and the effect of various drugs reveal a great
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diversity of kinetic functions (exponentially decreasing or increasing curves,
curves which pass through a minimum or maximum, and curves going from minimum to
maximum extremes). These graphs reflect the phenomena of tumour growth inhibition,
regressions, recurrences, etc. Figure | presents kinetic curves obtained in the
study of experimental tumour processes. The common S-shaped kinetic curve is taken
as a standard and treatments giving different results are considered.

f
foo
7z ‘
4
Fig. 1 Types of kinetic curves for tumour growth.

1 — Control; 2 — Inhibition after early therapy;
3-5 —~ Treatment of a developed process with inhib-

N ition effects (3), with complete (4) and partial (5)
regressions; F — Tumour size (Fo — initial, Fo —
attainable limit).

Experimentally, kinetic curves are obtained by means of many data from a large
number of animals. However, kinetic curves can be plotted for individual animals
as well: the shape will then be prone to individual fluctuations during the
experiment. Tumour growth in another animal will not give exactly the same kinetic
curve, even if the experimental conditions are exactly the same. This lack of
reproducibility cannot be helped; it is due to the variable proliferation of
tumour cells: different animals are not genetically identical and their individual
physiology can differ widely, resulting in large deviations from mean values.

Figure 2 presents kinetic curves for individual animals. These curves show the
random nature of tumour growth. Each point in an individual kinetic curve is
defined by its time coordinate, t, and a relevant value, F, characteristic of
tumour growth. All kinetic curves have a natural original point (0, Fo) corres-
poriding to an initial F value at the time of tumour transplantation when t=0.
Each individual curve also has its final point (T, F{) at the death of the animal.
Death can be caused by the tumour, as a result of toxic therapy, or old age in
cases of successful chemotherapy. Therefore a group of animals must be used for
the study of tumour growth. Tumour models are amenable techniques for use in large
groups of animals; the results are reproducible and are suitable for statistical
analysis. Mathematical models help in planning experiments and analyzing the data
obtained (Kramer, 1948; Nalimov, 1971; Malenvo, 1975).

The theory of random processes helps to construct the model (Prokhorov and Rozanov,
1973; TFeller, 1967; Grenander, 1961). We may imagine an infinite number of all
potentially possible kinetic curves for tumour growth. Each of these curves is
denoted by w so that the functions F(t) and the set Q of all w have the same value.
Each curve originates at a point (0, Fo,) and ends at a point (tys Fry). Let the
subset B in set Q be probability P{B}.
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Fo

[~ 4
rl
0 %% T, ¢
Fig. 2 Examples of kinetic curves for tumour growth in individual animals.

1-3 — Control; 4 — Regression as a result of treatment; T1; (£=1, 2, 3, 4)
— time of death. ;

Denote by Qt the set of all w that correspond to curve F, still present to the
time ¢, i.e. those for which Ty2t. It will be seen that P{Q;} is the probability
of survival at time t. This probability v(¢) is:

v(t) = P{Q¢} 1)

The curve v(%¢) is the true survival curve. Obviously v(0) =1, and v(x) = 0.
Consider two procedures of averaging the individual kinetic curves.

1. Introduce the notion 'true average kinetic curve' u(t). Define u(t) for each
moment of time as the mathematical expectation of the value F,

ue) = W) = [ Rue) SR - [ ryc) 20 | @
2 2

where M is the mathematical expectation symbol, and integration is made over set
Q. o

Another equivalent expresssion can also be given for curve u(t). -Estimate for any
t the distribution function of the random value F as the probability that F,(t) <F.
Then

_ _ [ Pldw}
P(F) = P{F,(¢) SF} = I Pla,t ° ‘ 3)
with integration over the set of all w €y such that Fyu(t) <F. The equation
+c0
) = J FaP, (F) @

is then valid. The true dispersion of F is defined as

e
of = M[F-u(®)]* = I [F -u())%aP. (7).

=00
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F
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¢
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Fig. 3 Plotting of kinetic curves for l(t) from the mean
arithmetic values of F.

Figure 3 shows the position of curve u(t) in the set of individual curves Fy(t).

lnN/
a
{nk,
I3
! ]
’ 7 5t

Fig. 4 Averaging of kinetic curves for exponentially growing
tumours (a) and the relevant survival curve (b).

Take a simple example of the definitions (1-4) (Fig. 4a). Assume an entity of
animals each having a number of tumour cells increasing strictly exponentially,
N=No exp(¢t). The same number of tumour cells, No, has been transplanted to all
animals at t=0. Let the exponential factor differ for different animals, the
possible values ¢ being distributed uniformly in the order ¢, <¢<¢,.

Assume that the death of animals occurs at a certain value N=N¢, independently of
¢. For this case index w can be identified with the value ¢. ¢ will be chosen as

Fg=1n N =1n [No exp(dt)] = ¢t + 1n No.
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Every individual curve is plotted only up to time

T = ;7 1n (Nf/No).

The probability that ¢ will fall within the range (¢,¢ + d¢) is:
(1) at ¢<¢. P{do} = 0;

-9 __.
(2) at ¢, <d<¢a P{d¢} @2 -61) °

(3) at ¢>¢2 P{d¢} = 0.
Over the time range

v
0StsT,= o‘—z bges

all Fg curves are defined. Consequently Qt coincides here with the whole range
¢:S0<¢a2, and thus P{Qr} =1. Over the time range

I
T St<1Ta o In ¥e

only a part of the curves is defined. Here Q coincides with the range

LI
42507 In 3l

and therefore

P{;} = ¢—z]_—¢;(’? 1n g{-' - ¢‘,) .

The kinetic curves are not defined for ¢ > T,, and here P{ﬂt} =0,

Thus the survival curve v(t) plotted using Eq. (1) consists of three segments of
different analytical shapes (see Fig. 4b). Its descent represents an hyperbola.

Calculate (t) by Eq. (2). At 0<t<T,,

¢
u(t) =[=(¢t+lnﬂo) 3—"1—=9“—;—9¢’-t+1n1v°
2= 1

1

At T.St<1,,

T1n (WF/No)
u(t) = I (¢t + 1n No) - a9 , __$2-9,
$1 92 - ¢ %ln%' s

N
lf((blt + 1n TV‘t) + 1n No.
o

At t> 13, U(t) is not evaluated,

KETP - 8
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Thus U(%) represents a broken line consisting of two straight segments, though all
individual Fy(%) represent straight lines. This example suggests that generally
the shape of the curve u(¢) will probably be very different from the shapes of
individual curves Fy(t) over the time range corresponding to the death of the
animals. The curves for u(¢) and individual Fy(t) certainly can differ not only
in the death section, but also throughout the range of tumour growth. An example
of this can be found in Comfort (1965).

Now calculate P;(F), using the definitions

Fi(£) = ¢1t + 1n No,
Fa(t) = ¢zt + 1n No.

Eq. (3) yields the expressions for 0<¢t<T,

{° F-Fy(t)
Fo@® -F (D)

for F<F,(t)
for Fi(t) SF<SF,(t)
for F2PF,(t)

Pr(F)

and at T, <St<T:

Py (F)

o for FSF,(¢)
F-F,(t)
_F-Fy(t) for F.(t) SF<1n Nf
{1ln Nf-Fx(t) for F 2 1n Nf

The function Pr(F) is not determined for ¢t >T,.

The Py (F) probability distributions enable calculation of u(t) using Eq. (4). The
function obtained coincides with p(t) calculated by Eq. (2).

A more satisfactory model of tumour cell population growth is the 'branching
process’, or the process of 'birth-death', It starts with a number, N=No, of
tumour cells and is characterized by parameters representing the probabilities of
division and decay of a cell in unit time. Such a model can provide a precise
solution (Prokhorov and Rozanov, 1973; Feller, 1967; Beili, i970; Bartlett, 1958;
Karlin, 1971; Harris, T.E., 1963). At high N values, ¥ can be considered as
continuously changing with time. The process 'birth-death' then becomes a 'dif-
fusion process' (Venttsel, 1975). The theory of diffusion processes is well
developed (Ito and McKean, 1965).

The 'birth-death' models are representative of the kinetic patterns of population
growth of pathogenic micro-organisms in animals where growth begins with a small
number of cells (Shortley and Wilkins, 1965). 1In certain cases these models might
also be used to represent tumour growth kinetics. The practical value of these
and other detailed mathematical models in experimental oncology depends on how well

they represent the factors controlling tumour growth. The most important of these
factors are:

(a) The heterogeneity of the tumour cell population which is more like a series of
interacting subpopulations with different biological properties. This hetero-
geneity can increase with tumour growth due to the appearance of mutant cells,
metastases, etc.

(b) The lack of synchrony of internal physiology of different cells, even in a
uniform subpopulation.

(c) The necessity of allowing for the time-dependent interaction of tumour cells
with host systems responsible for feeding the tumour, systems creating anti-
tumour immunity (specific and nonspecific), and systems controlling the prolif-
eration of normal cells.
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Examples of mathematical population growth models allowing for such factors can be
found in ecology, demography, and the theory of evolution (Moran, 1962; Eigen,
1973; Crow and Kimura, 1970). However, the creation of mathematical models for
tumour growth that would find wide application and would adequately reflect the
proliferation mechanisms of tumour cells needs further investigation.

2. Take a group of individual kinetic curves (Figure 5b) that were presented
earlier in Figure 3. Every curve terminates at a time Ty corresponding to the
death of the animal. However, these curves can be rearranged in such a way that a
fraction of an individual animal life-span after tumour transplantation 6=t/Ty
would be chosen as an independent dimensionless variable. Then all kinetic curves
will originate at ©=0 and terminate at 6=1. As a result of this procedure the
curves will transform as shown in Figure 5a. We can now define the true average
kinetic curve for the set of curves in Figure 5a as the curve for mathematical
expectation of F for each 6:

o) = MF) = I F(8)P(dw)
Q

To define the true average life-span of animals as the mathematical expectation of
individual life-span Ty,:

T = JQ TP (dw)

Let function U(8) correspond to the time ¢=61. Thus the true average kinetic
curve will be defined as the function p=u(t/T) that terminates at t=T (Fig. 5b).

F F

() /' p8) (b) /- A

-

Sn

1 y) J
o V3 2r3 1 /3¢ 2/3¢ T
e t

Fig. 5 Plotting the mean kinetic curve for time
relative to the animal's life-span

an

Consider the example of a family of semilogarithmic anamorphoses of the exponential
kinetic curves in Figure 4. The curve for mathematical expectation (the semi-
logarithmic anamorphosis of the true average kinetic curve) will then be a straight
line instead of a broken line within the range t=0 to ¢=T, i.e. to the mean
lifespan of tumour-bearing animals (compare the straight line 2 with the broken
line 1 in Figure 6a). Passing from semilogarithmic anamorphoses to kinetic curves
we obtain accordingly two types (3 and 4) of mathematical expectation curves
(Figure 6b). With both averaging procedures the kinetic curves virtually coincide
up to time ¢ =T, (time of death of the first animal) and then the curves diverge.
This divergence might appear to be immaterial, if the time interval between T, and
T2 (death time of the last animal) is small,

At the same time it will be noted that curve 4 belongs to the same family of
curves as do the individual kinetic curves, and in this sense it describes better
than curve 3 the tumour growth kinetics, just as does the curve u(6) in Fig. 5b.
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2 !
ln/-'f
a
ln@
T, T 4, ¢
Ff 4 Kj
7 %
I3
o
0 .
¢, 7T 1t

Fig. 6 Comparison of two averaging procedures
for exponential kinetic curves

2. EXPERIMENTAL POINT AND THE EXPERIMENTAL
KINETIC CURVE

In practice the individual kinetic curve Fj(t) referring to an animal with index
J is recorded not in full, but only for a finite number of points or only for one
point if measurement necessitates slaughter of the animal. Thus the experimental
data obtained for a group of @ animals represent a set of 7 separate measurements
of F made at various m times. These measurements are represented in Table 1.

TABLE 1 Sample of Experimental Data

Time of Index J Number of
measurement 1 2 ... F ... @ measurement
ta Fyy Fiz ... F;j cee F;Q N,
tz sz Fzz ces sz s e FzQ N2
ty F; Fia ... Fij ven FiQ ng
tm Fpa sz PN ij cee FmQ ™

Number of R
measurement Vs Va e V5o eee Vg n

Certain Fij values may be absent if relevant measurements were not made. The
number of all measurements is
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Q m

n= z vj = Z ng .
e

The pairs of numbers (t;, Fij) that can be plotted in co-ordinates (t,F) are

referred to as experimental points. The times t; must not be considered as random,

since they are usually fixed by the investigators, whereas F.LJ represent random

values.

Generally, the values F-,,J representing measurements for the same animal j made at
various times t; are stochastically dependent. The value 1«"1_‘7 for the same time
t; can be considered as stochastically independent, as measurements refer to
different animals.

As stated before, the probability distribution for the random value Ft; is Pt1, (F).
The distribution P¢;(F) is characteriged first of all by its mathematxcal
expectation u(t;) and by dispersion §7. The following sample characteristics are
calculated to estimate these values:

1) Sample means
n
Fr = L1 Foax
T on; 4 J

J

S

that can serve as estimates for u(t;), since MF; = u(t;);

2) Sample dispersions

53

nq
Z (Fij -Fp)?
J=1
and the corresponding root-mean-square de\n.at].on S; = /S,L . The values S;
can serve as estimates for 67, since MS.L —61 .
3) Root-mean-square deviations of the sample means SF_ =Si/(n,,;)i. The mean
2
experimental points (t;, F;) together with the intervals tSf.i can be plotted

(Figure 7a). These intervals determine the scope of deviations of the sample
means F; from the true averages u(t;).

F F

(a) T {b) !
- T’I—I_ H
— I/I I [}
- 1
- *

s s
- 7 F ——fe
- : -s P (F)
- 7
- b
A

L / 1
I | :
IS et 0NN N DR N L

)
N
Iy
»
®
o

-

Fig. 7 Experimental kinetic curve (a) and the mean
experimental point (b). S — mean quadratic equation;
P(F) — distribution density of experimental points.



