- M. S. Carberry, H. Khalil,
J. Leathrum, and L. Levy

COMPUTER SCIENCE PRESS

FOUNDATIONS OF
COMPUTER SCIENCE

M. S. CARBERRY
H. M. KHALIL
J. F. LEATHRUM
L. S. LEVY

All of the authors are on the faculty of the
University of Delaware

COMPUTER SCIENCE PRESS, INC.

Copyright © 1979 Computer Science Press, Inc.
Printed in the United States of America.

All rights reserved. No part of this work may be reproduced, transmitted,
or stored in any form or by any means, without the prior written consent
of the Publisher.

Computer Science Press, Inc.
11 Taft Court
Rockville, Maryland 20850

12 3 4 8 85 84 83

Library of Congress Cataloging in Publication Data
Main entry under titie:
Foundations of computer science.

Bibliography: p.
Includes index.
1. Electronic data processing. 2. Electronic digital computer. |.
Carberry, M. S. Il. Series
QAT76.FB373 001.6'4 78-27891

ISBN 0-914894-84-6

First paperback printing 1983
First hardcover printing 1979
Second hardcover printing 1982

Preface

Computer science is a young field which is undergoing rapid change com-
pared to more established academic disciplines. This movement has led to a
variety of curricular approaches. Moreover, the different environments in
which computer science has grown-up, and the sundry research interests of
faculties has encouraged different courses of study, and attempts to define
the nature of the science--which is surely a source of confusion to other
disciplines.

It is a truism, that like the five blind Indian sages encountering the elephant,
different computer scientists have come to different definitions of computer
science. Our (first order) definition is that computer science is the study of
the theory and practice of programming computers. This differs from the
most widely used definition by emphasizing programming as the central
notion and algorithms as a main theoretical notion supporting programming.
The study of heuristic programming is certainly part of our computer science.
While it is premature to measure the relative significance of empirical meth-
ods in our science, ignoring them would give a distorted view of the science.

This text was designed for the student taking his or her first course in Com-
puter Science. No college level prerequisites are assumed. Where mathe-
matical notions are employed, intuitive discussions are included to help the
student relate to and understand the result.

The book is language independent—we present algorithms in flowcharts,
pidgin algol, or decision tables. We show algorithmic methods of translating
from one form to another (The text has been taught with at least the following
languages: Basic, Cobol, Fortran, PL/1, Algol 60, DELISA—a lisp dialect and
APL. it has been class-tested in introductory, computer science together
with a variety of language primers. The objective of the text is to provide
material at a depth such that it can be covered at the rate of one chapter
per week in a one-term course. It is suggested that Chapters 1 through 7
be covered thoroughly, and that topics be selected from the remaining chap-
ters according to the interests of the students and the instructor. It is also
possible through more intense work in applications (Chapters 8, 9, and 11)
to support a full year of instruction.

vi Preface

The core material is contained in the following sections: 1.1, 1.2, 1.3, 2.1, 2.2,
41,43 44,51,6.1, 62,63, 64,65, 7.1, 7.2, 7.3, 7.4, 7.5. The remaining ma-
terial in chapters 2, 4, 5, and 6 is optional and may be covered in sequence.
Chapter 3 may be covered after chapter 2 or deferred untit all of the core
material has been covered—at which time the student will surely have a
deeper appreciation of the many concepts and techniques relevant to struc-
turing.

Chapters 8-9 and chapters 11-15 may be covered any time after the core
material has been covered. The order is also not critical. A second course in
general computer science can easily cover all of the remaining material.
Chapter 10 may be covered at any time after chapter 1, with additional out-
side readings recommended, such as Norbert Weiner's God and Golem.

Although the complete text is designed for a one year course, we have also
taught it extensively as a one semester course using selected material. Stu-
dents who complete the year course have a preliminary working knowledge
of both high level fanguage programming—including recursion and other ad-
vanced topics—as well as a knowledge of structured assembly language
programming. (Kimura)

Acknowledgements

The authors are particularly indebted to students and reviewers who have
provided helpful suggestions in preparing the text. The faculty and adminis-
tration of the University of Delaware deserve special thanks for their support
of the objectives of Foundations of Computer Science and for providing the
academic means for encouraging its development. The patience and persis-
tence of Miss Beverly Crowl in typing the text is also gratefully acknowledged.
For the understanding and encouragement from our families, no amount of
praise or thanks would be sufficient.

Contents

1. Computer Science: Scientific and Historical Perspectives

1.1 An Overview of Computer Science
1.2 Computer Science in Scientific Perspective
1.3 Computer Science in Historical Perspective

2. Problem Solving on Computers

21 AIGOMNMS . . e
22 Flowcharts. e e
2.3 Alternative Formulations of Algorithms.....................
2.4 The Algorithmic Method—Theoretical Limits

3. Programming Methodology

3.1 Writing Correct Programst
3.2 Structured Programming.....................oviiiia
33 Program Debugg@ing

4. Computer Systems-—An Overview

4.1 Number Systems and Representation of Information........
4.2 The Hardware Components of a Typical System
4.3 MICrOPrOCeSSOrS ... ottt e et aiea e aas

5. Semiotics: Syntax, Semantics and Pragmatics

51 A Summary of important Concepts
5.2 SYNAX. . e
53 The Recognition Process. ...,
54 SemantiCs ...
5.5 Pragmatics. e

6. Control Structures

6.1 Sequential Control. i
6.2 Conditional Control.
6.3 Unconditional Transfer..............oiiiiiii i,
6.4 lterative Control i i
6.5 Subroutine Control
6.6 Other Control Structures. i iiann.

o OO

viil

71
7.2
7.3
74

8.1
8.2
83
8.4
85

9.1
9.2
9.3
94
9.5

10.

10.1
10.2

1.

11.1
11.2
11.3
11.4
11.5

12.

12.1
12.2
12.3
124
12.5

13.

13.1
13.2
13.3

Contents
Data Structures
Fundamentals of Data Structures ool 134
Treesas DataStructures. ..., 136
Data Structures inProgramsooiiiiii ... 143
Realization of Data Structures 155
Numerical Applications
Examples of Numerical Applications....................... 164
Important Features of Numerical Computations............. 165
Error Analysis. i 165
Examples of Numerical Algorithms 173
The Future of Numerical Applications...................... 176
Nonnumerical Applications

Examples of Nonnumerical Applications 182
Features of Nonnumerical Computations................... 183
Nonnumerical Algorithms e 184
Large Scale DataBases..............ociiiiiiiiiiint, 196
Future of Nonnumerical Applications 201
Social Issues in Computing
Computers in the Social Milieu........................... 204
Social Implications of Computers. 210
Artificial Intelligence
Can Machines Think?.............. 220
Problem Solving........... 221
Backtracking. 225
Game Playing 227
Machine Learningo i 231
Computer Software
An Overview of Computer Software....................... 239
Compilers 248
Assemblers and Macro Processors 251
Operating Systems i i 253
Software Hierarchy 255
Interactive Computation
Features of Interactive Languages 263
Examples of Interactive Languages 264
Other Interactive Languagesccc.covoi... 270

14.

14.1
14.2
143

15.

156.1
15.2
15.3

Contents

Mathematical Modeis of Machines

An Overview of Mathematical Models
Finite State Machines i i
TuringMachines i

Programming a Pocket Calculator

Descriptionof aCalculator.,
Arithmetic Operations
Compilingthe Program

Chapter 1

Computer Science:
Scientific and Historical
Perspectives

1.1 An Overview of Computer Science
1.2 Computer Science in Scientific Perspective

1.3 Computer Science in Historical Perspective

2 Computer Science: Scientific and Historical Perspectives

In commenting about the relation between experience and its assimilation,
Frederick the Great is said to have observed that he knew two mules who had
been in the army for forty years but were still mules.

This story applies directly to computers and computer science. A computer
scientist is one who not only works with computers, but aiso abstracts the
essential principles of the computer and its application. In learning computer
science, you will learn to use the computer, but you wili also learn a discipline
of thought. The methods of formulating and solving problems which are
basic to computer science are also applicable to many other sciences, arts,
and humanities.

We begin with an overview of the field of computer science. As a young sci-
ence, it is still rapidly expanding, with constantly shifting frontiers. Still we
try to delimit the scope of the science, and give an indication of how it applies
to other fields.

The historical background of computer science is also sketched briefly, The
history of the subject is often presented purely as a chronology of devices
from mechanical to microelectronic. However, there are also general phiio-
sophic and scientific roots to the attempted mechanization of mathematics
and of thought.

1.1 Overview of Computer Science

Computer science is an emerging discipline of thought and activity which
may be dated from the early 1960s, although its historical roots in logic and
mathematics go back to the turn of the century. The very newness of the
discipline leads to self-consciousness and introspection which is not found
in the more classical disciplines of science. The definition of computer sci-
ence is still an active area of discourse and development from which only a
few glimmers of insight have emerged so far.*

The following is a tentative definition of computer science:

Computer science is a discipline concerned with the study of the principles
of programming and problem solving via digital computers, and of repre-
senting and processing information.

In order to fully understand this definition, the terms “programming’’ and
“digital computer'’ deserve some analysis. Programming is the act of organ-
izing a complex set of related activities into correct, optimal sequences. Thus,
the route selection in travel, pattern layout in sewing, and even the strategy

*“N is only atter long experience that most men are able to define a thing in terms of its own
genus, painting as painting, writing as writing.”

Ezra Pound, "A, B, C of Reading,” 1934, p. 71

Overview of Computer Science 3

used in courting are examples of programming. Some programming prin-
ciples are:

(1) Invariant Imbedding: In solving a programming problem one should
seek smaller, simpler programming problems imbedded within the original
one.

(2) Isolation: |Insofar as is possible, a programming task should be isolated
(3) Generality: The solution to the programming problems should be ap-
plicable to other similar problems.

Exercise 1.1-1

Propose a trave! itinerary for road travel from New York to Los Angeles in min-
imum time. What principles of programming were used in arriving at your
solution?

Exercise 1.1-2

Consider the Towers of Hanoi problem which requires that you move the discs in
Figure 1.1 from peg No. 1 to peg No. 3, such that

(a) Only one disc may be moved at a time:

(b) No disc may rest upon any other disc of smaller size.

1 2

w

- f

?L 3
B T .
bl [U

Figure 1.1: Towers of Hanoi

Discuss how you solved the problem. What principles of programming were
involved? (Hint: First solve the problem of moving the two smallest discs to peg
No. 2))

Computers require organization of their activities into correct, optimal se-
quences. The process of organizing the actions of computers is known as
computer programming.

A digital computer is an electronic device composed of interconnected dis-
crete state elements. The interconnection of these elements permits such
actions as counting, arithmetic, logic, and storage. The organization of the
interconnections is of considerable scientific and engineering interest, but
is of very limited concern to computer science. The relationship of a com-
puter scientist to the organization of a digital computer is analogous to the
relationship of an architect to a building. The primary concerns of the com-
puter scientist are (1) the relationships between the major components of the

4 Computer Science: Scientific and Historical Perspectives

computer and {2) the relationships between the computer and its environ-
ment.

Further insight into the definition of computer science may be achieved by
considering the theoretical foundations of the science. An outline of the main
theoretical areas of computer science was cited by Salton* and attributed to
H. Zemanek:

(1) a theory of programming, with emphasis not mainly on the problem of
distinguishing the computable from the noncomputable, but rather on a
practical theory of algorithms concerned with the construction of econom-
ical and efficient programs.

(2) atheory of process and processor organization, which takes into account
the finite dimensions of existing memories, the availability of storage hier-
archies of varying access speed and costs, and the desire for a reduction in
computation and program production time;

(3) a theory of description for processes and computational structures in
terms acceptable to the processor: and

(4) atheory of computer applications which would include all features com-
mon to most numeric and nonnumeric applications.

The mention of these theoretical areas does not suggest that they are well
developed. Computer scientists are actively establishing suitable theoretical
foundations of the discipline’s primary concerns.

In defining computer science, some things that are not computer science
should also be considered. The following are related to but don't coincide
with computer science nor are included completely within computer science:

Digital Electronics
Mathematics

Logic

Mathematical Programming
Numerical Analysis

If you still feel unsatisfied after learning what is and what is not computer
science, then perhaps the chapters that follow will provide that extra ‘‘feel”
for what computer science is about.** To summarize this first view of com-
puter science, we may say that computer science is now trying to develop
programming techniques and significant ways to talk about programs as
they relate to digital computers.

*G. Salton, "What is Computer Science?" Journal of the Foundation for Computing Machinery
19, No. 1, (January, 1972): 1-2, Copyright 1972, Association tor Computing Machinery, Inc.,
reprinted by permission.

**Description would but make it less;

‘Tis what | feel, but can't define

‘Tis what | know, but can't express"

Beilby Porteus, “On Love"

Computer Science in Scientific Perspective 5

1.2 Computer Science in Scientific Perspective

Computer science developed into a discipline during the 1950s and 1960s,
a period of great emphasis upon technological progress. During this same
period, economic and saocial pressures began to press the computer more
and more into the lives of the ordinary people. Much of the interface between
computer science and other sciences and humanities is changing very
rapidly, but it does deserve some scrutiny in order to view future develop-
ments in their proper perspective.

The growth and development of computer science ciosely parallels that of
nuclear science. From the beginning of the so-called “‘nuclear age" the
computer has been relied upon to provide accurate and timely predictions
of intensity of nuciear phenomena. From the design of nuclear weapons to
the design and control of the most sophisticated nuclear reactors, the digital
computer has been indispensable. The technology of computers also under-
went rapid development under pressure from nuciear science. The techno-
logical activity is still evident in the name of the largest organization of
computer-oriented professional peopie, “Association for Computing Ma-
chinery,” emphasizing the mechanical or machine aspect of computing. Most
computer scientists are now concerned with programming and problem
solving.

Close upon the heels of the development of nuclear science came the rapid
development of aerospace science in the 1960s. Many of the computer ap-
plications developed in nuclear science were readily transferred to aerospace
applications. These aerospace applications included guidance and control
computations and analysis of radiation effects, both requiring a high degree
of numerical accuracy. Many of the reliability problems associated with
nuclear science also arose in aerospace science. The most significant new
role of the computer in aerospace science was in the area of communication.
The computer was called upon to absorb, discriminate. filter, and even im-
prove the features of data being transmitted over interplanetary distances.
Instead of being a design engineering tool for a few scientists, the computer
became a node in a communications network supporting space travel. Thus,
in many ways the aerospace activity gave impetus to the development of the
computer.

The rapid growth of population and need for service in the 1960s placed their
own unique pressures upon the development of computer science. Busi-
nesses, governments, and institutions found that, due to the number of
individuals being served, they needed the computer’s speed and reliability.
New problems arose, however, when it was realized that such applications
required storing and manipulating vast amounts of data, most of which was
nonnumerical. The technology of data storage underwent very rapid develop-
ment under this pressure. New problems arose in the areas of data integrity

6 Computer Science: Scientitic and Historical Perspectives

and security, design of interfaces between the nonscientist and the computer,
and the elimination of useless data.

Exercise 1.2-1 1’

List the ways you have interacted with a computer in a typical day. List the ways
that you suspect you have interacted with a computer but are not sure.

1.3 Computer Science in Historical Perspective

A. Hardware Technology

Most of the concepts implemented in the earliest digital computers built
during World War Il had been developed by Charles Babbage during the
early nineteenth century. However, the technological requirements of the
design, precision, and maintenance of tolerances precluded their successful
execution. When the technology of scientific instrument design had ad-
vanced sufficiently to allow the construction of these complex devices, they
were essentially reinvented. It was then that the pioneering work of Babbage
was rediscovered.

The principle operation of computers can be understood by referring to
Figure 1.2. There are two essential components in Figure 1.2: a storage
or memory for numbers or data, and a processing unit. The data to be oper-
ated on are introduced initially via the input/output unit into the storage unit.
Subsequently, they are routed to the processing unit and back to storage
(perhaps several times, depending on the complexity of processing) and
finally the (refined) data are routed to the output.

Since the cost of storage increases with the speed of retrieving information,
most computing systems use several types of storage. The fastest storage is
main storage and is often mounted on the chassis of the central processor.
Bulk storage, typically in the form of tapes or discs, is used to retain large
files which would cost too much in main storage and to store data not cur-
rently being processed. Often, an initial phase of processing is the transfer
of data from a bulk storage file 1o main storage. The final phase after process-
ing is the return of the updated file from main storage to bulk storage.

In Babbage's early design and in the first implementations, the storage was
provided in the form of electromechanical components similar to many
office machines, and the sequence of operations on data was preset or ex-
ternally controlled. The paths of information flow were mechanical linkages.
The arithmetic operations were performed in seconds.

By the mid-1940s the much greater speed of electronic circuitry had replaced
the electromechanical devices, and the first generation of digital computers
to appear commercially in the early 1950s were electronic. These computers

Computer Science in Historical Perspective 7

MAIN FRAME
o
[

I, N S
i B r 1
Communizations | ! Centra’ Bulk |
; i
L (S

L ‘ I

R s
@] m : Man
f
I
|

Storage

|
i
4
I
Controtler P processor | Storage
i
1
|
/
|
|
|
|
!

Figure 1.2: A simplified block diagram of a digital computer

used vacuum tube circuitry in the processing unit. and a variety of devices
for storage. Typical arithmetic operations were measured in tens of micro-
seconds, representing a great speed advantage over the electromechanical
components. A significant innovation, introduced by von Neumann in the
early electronic digital computers, was the control of the central processor
activity by data stored in the memory. This stored program concept allows
programs to be modified, as if they were data. and is used in all subsequent
computers.

By the late 1950s, a new generation of computers had supplanted the early
electronic digital computers. These new computers used solid state elec-
tronics in both the memory and processing units. The transistor, developed
in 1948, is a miniature crystalline device functionally equivalent to a vacuum
tube. It became the primary active component in the processing unit. The
magnetic core memory, composed of myriads of miniature ferrite ceramic
cores, became the standard memory component. Typical processing speeds
for arithmetic operations were severat microseconds (1 microsecond = 10°¢
seconds).

Today's computers represent the third generation in the evolution of digital
computers. Processing units are primarily composed of modules of solid
state integrated circuitry. These solid state integrated circuits comprise tens
to hundreds of transistors on a small crystalline base. Speed of operation of
the processing circuits is measured in nanoseconds (1 nanosecond = 109
seconds). Memories are primarily magnetic core, but the cores are generally
improved, smaller and faster. Solid state memories are becoming more
prevalent. Typical processing speeds are of the order of one microsecond or
faster for arithmetic operations.

The components we have discussed in this section are generally referred to
as the main frame of the computer. The complete computer system will in-
clude input devices such as punched card readers, output devices such as
high speed line printers, and additional storage in the form of magnetic

8 Computer Science: Scientific and Historical Perspectives

disks and magnetic tape units providing larger quantities of slower but more
economical storage. In general, the performance of these auxiliary devices
has improved correspondingly.

Finally, as the performance of components has increased, the price has
decreased, and the reliability has improved. A good example of the effect of
this advance in technology is that today's mini-computers sell for a great
deal less than the largest computers of the early 1950s and provide superior
performance. On the other hand, the large computers of today that are com-
parable in price to their predecessors provide significant increases in the
size and performance of their storage and processing components.

The improvements in design have altered the use of computers in several
ways: (1) A larger class of problems is solved by computers now; (2) A
greater emphasis is placed on the use of the computer to simplify problem
solving; (38) Some apparently inefficient utilizations are tolerated to make the
user's job easier.

In summary, the past several decades have seen a continuing development
of computer technoliogy, with the promise of equal progress in the foresee-
able future. The improvement in performance is likely to alter the user's view
of the computer.

B. Mathematical Roots

We have a different view of the history of computer science when we look at
the development of the mathematical concepts. There is a long history, going
back several centuries, of the desire to reduce mathematics to mechanical,
routine procedures. With the development of mathematical logic in the last
half of the nineteenth century and early twentieth century, this goal began
to look feasible. A plan to make mathematical problem-solving routine is
attributed to Hilbert. The routine solution of a mathematical probiem is known
as the algorithmic method. Given any pair of numbers, x and y, we can com-
pute their product, even though we have never performed that particular
multiplication before. Likewise, given a theorem of geaometry, e.g. X2 + y2 = z?
in a right triangle where x, y are the lengths of the legs and zis the length of
the hypoteneuse (Pythagorean Theorem), we would like to have a routine
method of generating the proof.

Attempts to achieve the mechanization of mathematics led to some very
startling results. The following results were proved in the 1930s: (1) No
matter how we develop our mathematical system, there will be true facts
which we will never be able to prove (2) Given a sufficiently powerful mathe-
matical system to do arithmetic, we will be unable to automatically ascertain
whether a proposed theorem is, in fact, provable.

As a result of these developments and a recognition of the limits of the al-
gorithmic method, logicians and students of the foundations of mathematics
began to describe what could be computed—even though there were no

Computer Science in Historical Perspective 9

automatic computers. The objective was to describe, or characterize, the
types of problems which one could solve by a systematic (perhaps manual)
computation, and what, in fact, would qualify as a systematic {or algorithmic)
computation.

Due to the work of these logicians (Turing, Church, Kleene, Post, Markov)
we began to develop some concept of an algorithm and a programming lan-
guage (or language of algorithms). Thus, this work forms some of the theo-
retical basis of computer science.

C. History of Programming

As we have seen, as computers became more complex and the problems
they had to solve became more difficult, the task of programming, or prepar-
ing the problem for the computer, grew. Moreaver, as the computer tech-
nology developed, the number of different kinds of computers grew, making
the problem of transferring programs between computers more significant.

The solution to these problems was to program in an algorithmic language
and to use the computer to translate the algorithmic language, problem-
oriented program to a machine language program.

Fortunately, the field of linguistics was also undergoing a revolution as a
result of the same mathematical logic ideas being applied to language. The
linguistic developments have made the formal description of the algorithmic
languages and the translation from algorithmic to machine language easier.

The earliest algorithmic language of significance was FORTRAN [, developed
in the mid-1950s. It is difficult to recreate the atmosphere of only twenty
years ago when the feasibility of a machine independent algorithmic fan-
guage was seriously questioned. Today, FORTRAN is extensively used for
scientific computation, with a FORTRAN compiler available for almost every
extant computer. (A compileris a program that translates a program from an
algorithmic tanguage to a machine language.)

Sammet* discusses some 170 problem-oriented, machine-independent
languages. Of these languages, approximately half are specially designed
for some limited class of application, but the remaining half are general
purpose with more than a dozen enjoying a wide distribution and popularity.

COBOL, developed in 1960, is a business-oriented, machine independent,
algorithmiclanguage, and probably the most widely used procedure-oriented
language. ALGOL, developed at about the same time, is a language that has
had wide influence, especially overseas and in academic environments.

In the mid-1960s, PL/1 was developed to combine many of the features of
FORTRAN, ALGOL, and COBOL in a single Janguage. It has not yet suc-
ceeded in replacing any of these languages significantly.

*Communications of the Association for Computing Machinery (1970).

