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PREFACE

This text is designed primarily for the first year graduate student or practicing
engineer. It is more advanced than Schwarz and Shaw [1], but not as detailed (in
its ‘proofs) as Anderson and Moore [2] or Maybeck [3]. Only the essential,
information is presented; detailed proofs are referenced. The “practice” of esti-
mation is emphasized, and concepts are substantiated through detailed simula-
tions using state-of-the-art software [4, 5]. The required background is a course
in stochastic processes and basic linear system theory (z-transforms and state
space). The main theme of the text concerns fundamental concepts underlying
model-based signal processing. Two popular stochastic models—the autoregress-
ive moving-average model with exogeneous inputs (ARMAX) and the state-space
model—are employed in schemes that lead to solutions for both known Md
unknown model cases. Emphasis is on the practical design of these processors
using popular techniques. Each processor is developed in the unified “model-
based” framework, and examples as well as computer simulations are heavily
employed as a teaching aide.

The first chapter discusses the concepts of model-based signal processing
and lays the basic framework for future developments. The idea of a recursive
form is developed and used throughout the text.

In Chapter 2 we discuss the modeling of stochastic processes by first examin-
ing various representations and then introducing the ARMAX and Gauss—
Markov (state-space) models. It is shown how the models can be used to simulate
stochastic processes. Fundamental theorems proven in Astrom [6] and Jazwinski
[7] are discussed in terms of their practical applications. This chapter coupled
with Appendixes A (probability) and B (state space) provide the minimum back-
ground for further developments.

Chapter 3 discusses estimation theory and means of assessing estimator
performance. The general. techniques of minimum variance, least squares,
maximum a posteriori,-and maximum likelihood estimation are developed. This
chapter is based primarily on the paper by Rhodes [8].
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State-space (Kalman) filters are deveioped theoretically in Chapter 4 using
the innovations approach developed by Kailath [9]. The derivation of the pro-
cessor is coupled with more classical approaches using the Gauss—-Markov and
bayesian techniques. Appendixes C (matrices) and E (gaussian vectors) provide
the required background information.

The practical aspects of Kalman filter design are discussed in_depth in
Chapter 5. A well-founded “cookbook” approach is developed and applied to
simulated data sets. For those only interested in filter design, this chapter pro-
vides the minimum required information.

Chapter 6 discusses the extensions of the Kalman filtering technique to solve
problems it was not directly designed to solve. It is shown how to use the existing
approach with minor modifications. Simulated examples are discussed. Nonlinear
estimation using the linearized and extended Kalman filters is developed as well.
Appendix D (U-D factorization [7]) discusses the preferred numerical approach
to implementing the Kalman algorithm.

In Chapter 7 the classical Wiener filter is linked back to the Kalman estima-
tor. Classical Wiener filter design is discussed in terms of the innovations
approach, and then it s shown how many of the current “identification” tech-
niques (e.g., linear prediction, recursive extended least squares [10]) can be con-
sidered Wiener filter design tecliniques. Finally, the systems theory approach of
stochastic realization for scalar systems is discussed. This chapter should prove
interesting to signal-processing specialists.
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CHAPTER

ONE
INTRODUCTION

In this chapter we introduce the concepts of signal processing from the filtering of
deterministic data to sophisticated model-based signal processing. First, we inves-
tigate conceptually the difference between processing deterministic and random
data. We discuss a procedure for processor design and then develop the concepts
behind model-based processing.

1.1 BACKGROUND

In many applications, engineers and scientists are frequently faced with the
problem of measuring a quantity to directly predict physical phenomenology,
control some mechanism, or infer information about a quantity not directly
measurable. For example, a geophysicist may make measurements of seismic
signals and attempt to predict the subsurface structure of the earth for oil explo-
ration. A control engineer may use measurements of rotor speed to control a
turbine generator in a power plant. A chemical éngineer may make measurements
of temperature and pressure to determine the density of a particular liquid stored
in a tank. In all these cases, a measurement is used to predict or infer specific
information about some phenomenon. Heuristically, if the measured signal is free
from extraneous variations and is repeatable, then it is termed deterministic, but if
it varies ext;aneously and is not repeatable, then it is random. Figure 1.1-1 depicts
these relationsaips.
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/ Deterministic
Signal Measurement

P Measure’:?‘ W \ Random” Figure 1.1-1 Signal-measurement
astrum andom relationship.

The process ot extracting the useful information from a signal and discarding
the extraneous is called (loosely) signal processing. Signal processing takes many
forms depending primarily on the a priori knowledge or guesses of ihe underlying
phenomenology generating the signal. If it is felt that the signal is deterministic,
then techniques such as filtering (analog or digital) can be used to remove
unwanted disturbances. However, if the signal is random, then more sophisticated
filters must be used to extract the pertinent information. Normally, the filtering of
random signals is referred to as estimation, because most estimation filters are
statistical and estimation is a well-defined statistical techinique. One could also
argue that estimation is rooted in optimization theory because in general, the
“best” or optimal estimate is desired.

For example, consider the data and corresponding spectrum shown in Fig.
1.1-2a. From a priori knowledge of the process, it is known that the desired signal
has ho frequencies greater than 15 Hz. The raw spectrum indicates a disturbance
at 20 Hz. Since the data are deterministic, a low-pass filter with cutoff frequency’
of 12.5 Hz is designed to extract the signal (information) at 10 Hz and reject the
disturbance. The data are processed through the filter and the results are shown
in Fig. 1.1-2b. The processor has extracted (passed) the desired information
(10-Hz signal) and rejected the undesired (20-Hz disturbance).

This text is concerned with the development of signal-processing techniques
to extract pertinent signal information from random signals utilizing any a priori
information available. We call these techniques signal estimation, and we call a
particular algorithm a signal estimator or just estimator. Sometimes estimators
are called filters (e.g., Wiener filter) because they perform the same function as a
deterministic filter except for random signals; i.e., they remove unwanted dis-
turbances. Figure 1.1-3 depicts the operation of a typical signal estimator. Noisy
measurements are processed by the estimator to produce “filtered ” data.

Consider the random data and noisy spectrum deplcted in F1g 1.{-4a. An
estimation filter is designed to extract the signal and remove the noise. The data
are processed through the filter, and the results are shown in Fig. 1.1-4b.* The
processor has extracted the desired signal {pulse) and rejected the undesired
{noise).

Estimation can be thought of as a procedure made up of three primary parts:

I. The criterion function

2. Models -
3. The algorithim

* The hat notation " is used to define an estimate throughout this text.
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Figure 1.1-2 Processing of a deterministic signal and disturbance. (@) Raw data and spectrum. (b)
Processed data (signal) and spectrum,

The criterion function can take many forms and can also be classified as deter-
ministic or stochastic. For example, consider the well-known squared error cri-
terion

J = (error)?
or, if the error is interpreted as random, then
J = av (error)?
Noisy

measurement ) ) Estimate
————————p={ Signal estimator ———>

Figure 1.1-3 Typical signal estimator structure.
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Figure 1.1-4 Processing of a random signal and noise. (@) Raw data and spectrum. (b) Processed data
(signal) and spectrum.

Models represent a broad class of information formalizing the a priori knowledge
about the process generating the signal, measurement instrumentation, noise
characterization, underlying probabilistic structure, etc. For example, a standard
signal-processing model is that of a signal in additive noise

Measurement = signal + noise

where the noise statistics are specified as well as the signal structure.

Finally, the algorithm or technique chosen to minimize (or maximize) thd
criterion can take many different forms depending on (1) the models, (2) the
criterion, and (3) the choice of solution. For example, one may choose to solve
the well-known least-squares problem recursively or with a numerical-
optimization algorithm. Another important aspect of most estimation algorithms
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is that they provide a “measure of quality” of the estimator. Usually what this
means is that the estimator also predicts vital statistical information about how
well it is performing. To formalize these ideas further, consider the following
example.

Example 1.1-1 Consider the design of an estimator to minimize the squared-
error criterion and extract a deterministic constant from noisy measurements.
Suppose we define the following models of our process from a priori informa-
tion, that is, ’

Measurement = y
Signal = s (deterministic)
Noise = n
The criterion function is given by
J=E(s—7%)7?
We model the measurement by
y=s+n

and the noise as random (uncorrelated) and zero-mean with variance R,,. (See
- App. A for a review of probability concepts.) A linear estimator of the form

S§=ky

is desired and the appropriate weight k must be found. By minimizing J with
respect to k, setting the derivative to zero, and solving for k, that is,

di
T =0
we find that
_ E{sy}
E{y*}
or, in terms of the noise staﬁstics,
52
" s2 +R,
The quality of the estimate is given by J, where
- E*{s
I= 8-
Consequently, for these statistics we obtain
. s’R,

=s2+R,.
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Noisy

measurement Estimate, quality
| Signal estimator - Figure 1.1-5 Estimator for unknown signal

y k §J in random noise.

The structure of this estimator and process is shown in Fig. 1.1-5.

Thus estimation can be thought of as filtering random data. In the next
section we discuss the estimation procedure in more detail.

1.2 ESTIMATION PROCEDURE

Intuitively, we can think of the estimation procedure as

' The specification of a criter.:n
2. The selection of models from a priori knowledge
3. The development and implementation of an algorithm

Criterion functions are usually selected on the basis of information that is
meaningful about the process or the ease with which an estimator can be devel-
oped. Criterion functions that are useful in estimation can be classified as deter-
ministic and probabilistic. Some typical functions are as follows:

Deterministic:

Squared error
Absolute error
Integral absolute error
Integral squared error

Probabilistic :

Maximum likelihood

Maximum a posteriori (bayesian)
Maximum entropy

Minimum (error) variance

Models can also be deterministic as well as probabilistic; however, here we
prefer to limit their basis to knowledge of the process phenomenology (physics)
and the underlying probability density functions as well as the necessary statistics
to describe the functions. Phenomenological models fall into the usual classes
defined by the type of underlying mathematical equations and their structure, i.e.,
linear or nonlinear, differential or difference, ordinary or partial, time invariant or



