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PREFACE

This textbook was developed from notes used for a number of years in
teaching an undergraduate course in industrial noise and vibration control.
Furthermore, additional material was added to the notes as a result of
numerous industrial short courses taught on the subject. The topics have
been judiciously selected and every attempt has been made to present the
material in a fashion that is readily usable both for an undergraduate course
or for self-study by a practicing engineer.

The mathematics has intentionally been maintained at a level easily
handled by college sophomores; however, juniors are probably better pre-
pared in most instances for a rapidly moving treatment. Considerable detail
has been included in selected derivations. This was done to clarify certain
critical equations that are of great importance to the entire text. However,
this extra detail may be skipped at the discretion of the instructor without
a serious loss to practical problem solving.

Both English and metric systems of units are used throughout. A table
of conversion factors is provided in an appendix to allow for quick conver-
sion where it is desirable. No effort has been made to designate each and
every equation, table, and figure in both sets of units. Only in critical instances
are both given. All the remaining ones are left as exercises. Weight is given
in newtons as a simplification of units.

The text is replete with examples, and drill problems appear after most
sections in which an important formula or concept has been introduced.
For the most part, the drill problems are straightforward and relatively
simple. The answers to the drill problems appear with the problems. Addi-
tional problems at the end of each chapter are generally more difficult than
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xx Preface

the drill problems and are intended to exercise and demonstrate the new
concepts presented in the chapter which they follow. The answers to the
odd problems are given in at the end of the book. A complete solutions
manual with all drill problems and chapter problems solved is available
as an instructor’s aid.

J. D. IRWIN

Auburn University E. R. GraF

Auburn, Alabama
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SOUND LEVELS, DECIBELS,
AND DIRECTIVITY

1.1 INTRODUCTION

Sound may be described as a propagating disturbance through a physical
medium. It is perceived by the ear as a pressure wave superimposed upon the
ambient air pressure at the listener. The sound pressure is therefore the
incremental variation about the ambient atmospheric pressure.

We shall now proceed to a mathematical description of those pressure
waves that we designate as sound.

1.2 SOUND WAVE CHARACTERISTICS

Sound wave characteristics are readily described upon examining the attri-
butes of a pure tone. A pure tone is a sinusoidal pressure wave of a specific
frequency and amplitude, propagating at a velocity determined by the tem-
perature and pressure of the air.

Let us now consider a hypothetical sound generator, as shown in Figure
1.1. The source may be thought of as an elastic sphere that expands and
contracts sinusoidally at a frequency, f. As the sphere expands, the air
molecules are compressed. Then as the sphere contracts, the air molecules
spread apart; that is, the gas is rarefied. The sound wave thus generated will
have a frequency equal to the number of times per second which the sphere
expands and contracts. The peak pressure amplitude is a function of the
maximum excursion of the sphere.
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FIGURE 1.1 (a) Spherical source oscillating
at a frequency, f, to generate a spherical acoustic
wave, (b) pressure vs. time for the sinusoidal
wave with the compression and rarefaction of
the gas depicted

1.2.1 Frequency, Period, and Wavelength

The concept of frequency is common to both electrical and mechanical
oscillations. The frequency, f, of an oscillating disturbance is equal to the
number of times per second that the disturbance passes through both.its
positive and negative excursions. The number of cycles per second is termed
hertz (Hz). For example, in the United States our electrical utility systems
supply electrical power at 60 Hz, which simply means that a voltage is deliv-
ered with a sinusoidal waveform varying at 60 cycles per second.

The frequency of a simple pure-tone sound wave is recognized as the pitch
of the tone. The human ear responds to a range of frequencies from approxi-
mately 20 to 16,000 Hz, with a maximum sensitivity at about 3,000 Hz.

In the area of industrial noise reduction we shall be interested primarily
in the range of frequencies from about 63 Hz to 16,000 Hz. This is because
the sensitivity of the human ear is greatly reduced below 63 Hz and above
16,000 Hz compared to its peak sensitivity.
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The period, T, of the sinusoidal wave is depicted in Figure 1.1. Period is
related to the frequency, f, by

(1.1)

We note that the period is the time required for one complete cycle.

The wavelength, A, is the distance between like points on two successive
waves. Wavelength is related to the frequency and velocity of propagation
by

l:%:c?‘ ft or m (1.2)

where the velocity of propagation, c, is in turn a function of the characteris-
tics of the propagation supporting medium.

1.2.2 Velocity of Sound
The speed of sound in air is given by

c=x/?% ft/s or m/s (1.3)

_ specific heat (constant pressure)

where  y specific heat (constant volume)

Dpo = ambient or equilibrium pressure

p = ambient or equilibrium density

In the case of air, within the range of conditions of interest, y is taken as
1.4. Equation (1.3) then becomes

chL;b fis or m/s (1.4)

which can be further simplified by taking advantage of the fact that the ratio
Po/p is related to the temperature of the gas. Upon assuming that the air
behaves virtually as an ideal gas, the velocity, ¢, is related to the absolute
temperature in degrees Rankine by

c=49.03/R ft/s (1.5)

where R, the temperature in degrees Rankine, is

R =[459.7° 4 (degree Fahrenheit)] degrees (1.6)
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The velocity as related to degrees Kelvin is

c=2005./T m/s an

where T, the temperature in degrees Kelvin, is
T = [273.2° 4- (degree Celsius)] degrees (1.8)

EXAMPLE 1.1 Calculate the velocity of sound in air at 70°F (21.1°C) in
both English and metric units. Then determine the wavelength of a 1000-Hz
tone at the same temperature.
SOLUTION
R = (459.7° + 70°) = 529.7° Rankine
¢ = 49.03./529.7 = 1128 ft/s
T = (273.2° + 21.1°) = 294.3° Kelvin
¢ = 20.054/294.3 = 344 m/s

A=§=%§=1.fzsft at 1 kHz
1=§=%=o.344m at 1 kHz

It is also important to note that the velocity of sound in common build-
ing materials is generally quite different from that for air. This, in turn,
means that the wavelength in these materials is proportionately different from
that in air. This becomes of particular importance to us when we consider
the isolation of low-frequency sounds. Table 1.1 lists the approximate veloc-

TABLE 1.1

Approximate velocity of sound in certain
common media at room temperature (70°F or 21.1°C)

VELOCITY OF SOUND

Material ftis mfs
Air 1,128 344
Water 4,500 1,372
Concrete 10,000 3,048
Glass 12,000 3,658
Iron 17,000 5,182
Lead 4,000 1,219
Steel 17,000 5,182
Wood (hard) 14,000 4,267

Wood (soft) 11,000 3,353




