
PCR A Practical Approach

Edited by M. J. McPHERSON, P. QUIRKE, and G. R. TAYLOR

PCR

A Practical Approach

Edited by

M. J. McPHERSON

Centre for Plant Biochemistry and Biotechnology, Department of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK

P. QUIRKE

Department of Pathology, University of Leeds, Leeds LS2 9JT, UK

and

G. R. TAYLOR

Yorkshire Regional DNA Laboratory, Belmont Grove, Leeds LS2 9NS, UK

OXFORD UNIVERSITY PRESS Oxford New York Tokyo

Oxford University Press, Walton Street, Oxford OX2 6DP

Oxford is a trade mark of Oxford University Press

Published in the United States by Oxford University Press, New York

© Oxford University Press 1991, except Chapter 4

First published 1991 Reprinted (with corrections) 1992

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of Oxford University Press.

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form of binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

Users of books in the Practical Approach series are advised that prudent laboratory safety procedures should be followed at all times. Oxford University Press make no representation, express or implied, in respect of the accuracy of the material set forth in books in this series and cannot accept any legal responsibility or liability for any errors or omissions that may be made.

British Library Cataloguing in Publication Data

Polymerase chain reaction.
1. Organisms. Polymerases. DNA
I. McPherson, M. J. (Michael J.) II. Quirke, P. (Philip)
III. Taylor, G. R. (Graham R.) IV. Series
574.873282

ISBN 0-19-963226-X ISBN 0-19-963196-4 (pbk.)

Library of Congress Cataloging in Publication Data

Polymerase chain reaction: a practical approach / edited by M. J.

McPherson, P. Quirke, and G. R. Taylor.
p. cm. — (Practical approach series)

Includes bibliographical references and index.

1. Polymerase chain reaction. I. McPherson, M. J. II.Taylor,
G. R. (Graham R.) III. Quirke, P. (Philip) IV.Series.

[DNLM: 1. DNA Replication. 2. Gene Amplification. QH 450 P7833]

QP606.D46P66 1191 574.87'3282—dc20 90—14354

ISBN 0-19-963226-X ISBN 0-19-963196-4 (pbk.)

The polymerase chain reaction (PCR) process is covered by US patents numbered 4 683 202, 4 683 195, and 4 965 188 issued to Cetus Corporation and by other issued and pending patents worldwide.

Printed by Information Press Ltd, Oxford, England

PCR

The Practical Approach Series

SERIES EDITORS

D. RICKWOOD

Department of Biology, University of Essex Wivenhoe Park, Colchester, Essex CO4 3SO, UK

B. D. HAMES

Department of Biochemistry and Molecular Biology, University of Leeds Leeds LS2 9JT, UK

✓ Affinity Chromatography Anaerobic Microbiology Animal Cell Culture Animal Virus Pathogenesis Antibodies I and II **Biochemical Toxicology** Biological Membranes Biosensors Carbohydrate Analysis Cell Growth and Division Cellular Calcium Cellular Neurobiology Centrifugation (2nd edition) Clinical Immunology Computers in Microbiology Crystallization of Proteins and Nucleic Acids Cytokines [™]Directed Mutagenesis

~ DNA Cloning I, II, and III

Electron Microscopy in Biology

Drosophila

Electron Microscopy in Molecular Biology Essential Molecular Biology I and II Fermentation Flow Cytometry Gel Electrophoresis of Nucleic Acids (2nd edition) Gel Electrophoresis of Proteins (2nd edition) Genome Analysis HPLC of Small Molecules **HPLC** of Macromolecules **Human Cytogenetics** Human Genetic Diseases Immobilised Cells and Enzymes **Iodinated Density Gradient** Media Light Microscopy in Biology Liposomes Lymphocytes Lymphokines and Interferons

Mammalian Development Mammalian Cell Biotechnology Medical Bacteriology Medical Mycology Microcomputers in Biology Microcomputers in Physiology Mitochondria Molecular Neurobiology Molecular Plant Pathology I and II Mutagenicity Testing Neurochemistry Nucleic Acid and Protein Sequence Analysis Nucleic Acids Hybridisation Nucleic Acids Sequencing Oligonucleotide Synthesis Photosynthesis: Energy Transduction Plant Cell Culture Plant Molecular Biology Plasmids Postimplantation Mammalian

Embryos

Prostaglandins and Related Substances Protein Architecture Protein Function Protein Purification Applications **Protein Purification Methods** Protein Sequencing Protein Structure Proteolytic Enzymes Radioisotopes in Biology Receptor Biochemistry Receptor-Effector Coupling Receptor-Ligand Interactions Ribosomes and Protein Synthesis Solid Phase Peptide Synthesis Spectrophotometry and Spectrofluorimetry Steroid Hormones Teratocarcinomas and Embryonic Stem Cells Transcription and Translation Virology Yeast

Cover design based on an idea by Sarah Perry

Preface

The polymerase chain reaction (PCR) has rapidly become established as one of the most widely used techniques of molecular biology, and with good reason; it is a rapid, inexpensive, and simple means of producing microgram amounts of DNA from minute quantities of source material and is relatively tolerant of poor quality template. Starting materials for gene analysis and manipulation by the PCR may be genomic DNA (in extreme cases from a single cell or a few microdissected chromosome fragments), RNA (perhaps from only a few cells), nucleic acids from archival specimens, cloned DNA, or PCR products themselves.

Many variations on the basic procedure have now been described and applied to a range of disciplines. In medicine, for example, the PCR has had a major impact on the diagnosis and screening of genetic diseases and cancer, the rapid detection of fastidious or slow growing microorganisms and viruses, such as mycobacteria and HIV, the detection of minimal residual disease in leukaemia, and in HLA typing. The amplification of archival and forensic material has applications in forensic pathology and evolutionary biology. PCR has established a central role in the human genome project, particularly through the concepts of sequence tagged sites, microsatellites, and interspersed repetitive sequence PCR. In most molecular biology laboratories, the PCR has found routine use in processes such as probe preparation, clone screening, mapping and subcloning, and preparation of sequencing templates, as well as for more advanced applications such as cloning very low abundance transcripts, cloning gene families, directed mutagenesis, and sophisticated gene recombination.

This volume is intended to provide a general introduction to the PCR for those new to this area, and then to cover a range of more specialized topics and applications including template preparation, gene analysis and mapping, gene cloning and manipulation, and the fidelity of DNA polymerases in PCRs. Throughout the volume there is an emphasis on practical aspects with detailed protocols forming a central feature. Occasional overlap between chapters reflects the inclusion of alternative protocols to tackle a similar problem. In a single volume of this size it is not possible to cover the complete range of applications of the PCR technology, particularly since new developments are appearing at an unprecedented rate. Nevertheless, the editors hope this volume will provide something of interest to every reader; that it will serve as a starting point for those new to the PCR yet eager to start a voyage of discovery and that it will provide a useful reference to those already well down the PCR trail.

Preface

Finally we wish to thank the authors for their valuable contributions and the staff at OUP for the speed of production of this volume.

February 1991

M. J. McPherson P. Quirke G. R. Taylor

Contributors

TIMOTHY J. AITMAN

Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK.

DAVID R. BENTLEY

Paediatric Research Unit, Division of Medical and Molecular Genetics, UMDS, Guy's Hospital, London, SE1 9RT, UK.

C. THOMAS CASKEY

Institute for Molecular Genetics and Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.

TIM CLACKSON

MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK.

RICHARD J. CORNALL

Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK.

MARGARET J. DALLMAN

Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK.

KRISTIN A. ECKERT

Laboratory of Molecular Genetics, National Institute for Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA.

PETER M. GREEN

Paediatric Research Unit, Division of Medical and Molecular Genetics, UMDS, Guy's Hospital, London, SE1 9RT, UK.

MARKUS GROMPE

Institute for Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA.

SARAH JANE GURR

Centre for Plant Biochemistry and Biotechnology, Department of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.

DETLEF GÜSSOW

MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK.

JEREMY D. HAYDEN

Department of Pathology, University of Leeds, Leeds, LS2 9JT, UK.

Contributors

CATHERINE M. HEARNE

Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK.

ADRIAN J. IVINSON

Department of Medical Genetics, St. Mary's Hospital, Hathersage Road, Manchester, M13 0JH, UK.

DAVID P. JACKSON

Department of Pathology, University of Leeds, Leeds, LS2 9JT, UK.

DANIEL H. JOHNSON

Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, Florida 33136, USA.

KERRIE M. JONES

Department of Biochemistry and Molecular Biology, and Department of Genetics, University of Leeds, Leeds LS2 9JT, UK.

PETER T. JONES

MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK.

THOMAS A. KUNKEL

Laboratory of Molecular Genetics, National Institute for Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA.

SUSAN A. LEDBETTER

Institute for Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA.

MICHAEL LITT

Department of Biochemistry and Medical Genetics, Oregon Health Sciences University, Portland, OR 97201, USA.

JENNIFER M. LOVE

Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK.

MARCIA A. McALEER

Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK.

MICHAEL J. McPHERSON

Centre for Plant Biochemistry and Biotechnology, Department of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.

A. JANE MONTANDON

Paediatric Research Unit, Division of Medical and Molecular Genetics, UMDS, Guy's Hospital, London, SE1 9RT, UK.

xviii

Contributors

DAVID L. NELSON

Institute for Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA.

ANDREW C. G. PORTER

Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK.

PHILIP OUIRKE

Department of Pathology, University of Leeds, Leeds, LS2 9JT, UK.

ROLAND G. ROBERTS

Paediatric Research Unit, Division of Medical and Molecular Genetics, UMDS, Guy's Hospital, London, SE1 9RT, UK.

BELINDA J. F. ROSSITER

Institute for Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA.

JONATHAN SILVER

Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.

GRAHAM R. TAYLOR

Yorkshire Regional DNA Laboratory, Clarendon Wing, Belmont Grove, Leeds, LS2 9NS, UK.

JOHN A. TODD

Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK.

Abbreviations

AMD amplification and mismatch detection

AMV avian myeloblastosis virus

ARMS amplification refractory mutation system

ASO allele-specific oligonucleotide

ATP adenosine triphosphate BSA bovine serum albumin

βME β-mercaptoethanol (2-mercaptoethanol)

cDNA complementary DNA

CEPH Centre Etude Polymorphisme Humain CFTR cystic fibrosis transmembrane regulator

CIP calf intestinal phosphatase

COP competitive oligonucleotide priming CTAB cetyl trimethyl ammonium bromide

ddH₂O double distilled water

dNTP deoxyribonucleotide triphosphate

DEPC diethylpyrocarbonate

DGGE denaturing gradient gel electrophoresis

DMSO dimethylsulphoxide

DTT dithiothreitol

EDTA ethylene diamine tetraacetic acid

EtBr ethidium bromide

GAWTS genome amplification with transcript sequencing

HPRNI human placental ribonuclease inhibitor

HPRT hypoxanthine guanine phosphoribosyltransferase

IL-2 interleukin-2

IPCR inverse polymerase chain reaction IPTG isopropyl-β-D-thiogalactoside interspersed repetitive sequences

LMP low melting point LTR long terminal repeat

MES 4-morpholine-ethanol-sulphonic acid

MLV murine leukaemia virus

mRNA messenger RNA

nPCR nested polymerase chain reaction nRT nested reverse transcriptase

OTC orthinine transcarbamylase

PAGE polyacrylamide gel electrophoresis
PBL peripheral blood lymphocytes
PBS phosphate buffered saline

Abbreviations

PCR polymerase chain reaction

PEG polyethylene glycol p.f.u. plaque forming unit

PIC polymorphism information content

Pipes 1,4-piperazinebis (ethane-sulphonic acid)

r.t. room temperature RT reverse transcriptase

RFLP restriction fragment length polymorphism

RNase ribonuclease

SDS sodium dodecyl sulphate SSC standard saline citrate

SOE splicing by overlap extension
SSPE standard saline phosphate-EDTA
SSPEn subacute sclerosing panencephalitis
SSPR single-strand-producing reaction

TAE Tris-acetate-EDTA
TBE Tris-borate-EDTA
Taq Thermus aquaticus

TE Tris-EDTA UV ultraviolet

VNTR variable number of tandem repeat VRC vanadyl ribonucleoside complex YAC yeast artificial chromosome

Contents

₋ist	t of contributors	xvii
Abl	breviations	xx
1.	Polymerase chain reaction: basic principles and automation Graham R. Taylor	1
	1. The polymerase chain reaction	1
	2. Automation of the procedure Design features of automated temperature cyclers	2
	3. Reaction components DNA polymerase Deoxynucleoside triphosphates (dNTPs) Reaction buffer Primers	6 6 7 7 8
	4. Target DNA	8
	5. Reaction conditions	9
	6. Detection and analysis of the reaction product	9
	7. Preparation of probes by the PCR	10
	8. Preparation of single-stranded DNA	11
	References	13
2.	PCR in genetic diagnosis Adrian J. Ivinson and Graham R. Taylor	15
	1. Introduction	15
	2. Target DNA Source and preparation Amount of tissue and copy number	15 15 17
	3. Sex determination Introduction Prenatal sexing	18 18 20
	4. Contamination	20

Contents

	5. Product analysis Restriction fragment length polymorphism Size polymorphism Other techniques	21 21 23 26
	References	26
3.	archival material	29
	David P. Jackson, Jeremy D. Hayden, and Philip Quirke	
	1. Introduction	29
	2. Analysis of extracted DNA samples	29
	3. Extraction of DNA from fresh tissue Proteinase K incubation Boiling	30 30 32
	4. Extraction of DNA from archival material Formaldehyde-fixed, paraffin-embedded material Effect of fixative agent on DNA extraction Exfoliative cytology specimens Gross museum specimens	33 33 37 39 40
	5. Extraction and amplification of RNA	41
	6. Improving the sensitivity and specificity of PCR amplification Nested PCR 'Hot' nested PCR Avoiding PCR contamination Ultraviolet-mediated DNA crosslinking	42 42 43 46 47
	7. Summary	48
	References	49
4 .	Analysis of genomic sequence variation using amplification and mismatch detection (AMD) and direct sequencing	51
	Roland G. Roberts, A. Jane Montandon, Peter M. Green, and David R. Bentley	
ţ	1. Introduction	51
	2. Amplification and mismatch detection (AMD) analysis PCR amplification Labelling of probe sample Preparation of hybrids	51 53 55 56
	Mismatch analysis	58

Contents

		Direct sequencing Applications Characterization of disease mutations Identification of novel polymorphisms	59 60 60 62
	5.	Discussion Alternative mismatch detection methods Designing PCR reactions for routine genotyping	62 62 63
		References	65
5.	D	etection of deletions and point mutations	67
		elinda J. F. Rossiter, Markus Grompe, and C. Thomas Caskey	
		Introduction	67
	2.	Direct sequencing of multiplex PCR products:	
		detecting HPRT gene mutations	68
		Source material	68
		Design of multiplex PCR primers	71
		Single-strand-producing reactions (SSPR) Design of sequencing primers	72 73
		Results and interpretation	74
	3.	Chemical cleavage of PCR products: detecting OTC	
		gene mutations	75
		Design of PCR primers	76
		Procedures	78
		Results and interpretation	81
		References	83
ß	р	CR of TG microsatellites	85
v.		ichael Litt	92
	1.	Introduction	85
	2.	Ascertaining and scoring microsatellite VNTRs	86
		Screening for TG microsatellites	86
		Sequencing strategy	88
		Design of PCR primers	89
	_	PCR amplifications	90
	3.	Potential improvements	96
		Multiplexing Automation of the PCR	96 97
		References	98
		110101011000	30