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PREFACE

One of the most useful and best known tools employed in the
study of partial differential equations is the maximum principle.
This principle is a generalization of the elementary fact of calculus
that any function f(x) which satisfies the inequality f” >0 on an
interval [a, b] achieves its maximum value at one of the endpoints
of the interval. We say that solutions of the inequality f” > 0 satisfy a
maximum principle. More generally, functions which satisfy a differen-
tial inequality in a domain D and, because of it, achieve their maxima
on the boundary of D are said to possess a maximum principle.

The study of partial differential equations frequently begins with
a classification of equations into various types. The equations most
frequently studied are those of elliptic, parabolic, and hyperbolic
types. Because equations of these three types arise naturally in many
physical problems, mathematicians interested in partial differential
equations have tended to concentrate their efforts on those develop-
ments which are of both mathematical and physical interest. A reader
who learns differential equations by studying physically oriented
problems not only parallels the historical development of the subject,
but also acquires a clear understanding of the reasons some equations
are studied in great detail while others are virtually ignored. Since
many problems associated with equations of elliptic, parabolic, and
hyperbolic types exhibit maximum principles, we feel that a study of
the methods and techniques connected with these principles forms an
excellent introduction or supplement to the study of partial differential
equations.

There is usually a natural physical interpretation of the maximum
principle in those problems in differential equations that arise in
physics. In such situations the maximum principle helps us apply
physical intuition to mathematical models. Consequently, anyone learn-
ing about the maximum principle becomes acquainted with the clas-
sically important partial differential equations and, at the same time,
discovers the reasons for their importance.
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The proofs required to establish the maximum principle are
extremely elementary. By concentrating on those applications which
can be derived from the maximum principle by elementary methods,
we have been able to write this book at a level suitable for the
undergraduate science student. Anyone who has completed a course
in advanced calculus is qualified to read the entire book. In fact, any
student who, in addition to elementary calculus, knows line integra-
tion, Green’s theorem, and some simple facts on continuity and differ-
entiation should find almost all of the book within his grasp.

The maximum principle enables us to obtain information about
solutions of differential equations without any explicit knowledge of
the solutions themselves. In particular, the maximum principle is a
useful tool in the approximation of solutions, a subject of great inter-
est to many scientists. This book should prove useful, not only to
professional mathematicians and students primarily interested in
mathematics, but also to those physicists, chemists, engineers, and
economists interested in the numerical approximation of solutions of
ordinary and partial differential equations and in the determination
of bounds for the errors in such approximations.

The maximum principles for partial differential equations can be
specialized to functions of one variable, and we have devoted the first
chapter to a treatment of this one-dimensional case. The statement of
the results and the proofs of the theorems are so simple that the
reader should find this introduction to the subject strikingly easy. Of
course, the one-dimensional maximum principle is related to second-
order ordinary differential equations rather than to partial differential
equations. In Chapter 1 we show that portions of the classical Sturm-
Liouville theory are a direct consequence of the maximum principle.
This chapter is included primarily because it provides an attractive
and simple introduction to the various forms of the maximum princi-
ple which occur later. It also provides new ways of looking at some
topics in the theory of ordinary differential equations.

In Chapter 2 we establish the maximum principle for elliptic
operators, state several generalizations, and give a number of applica-
tions. Although the maximum principle for Laplace’s and some other
equations has been known for about a hundred years, it was rela-
tively recently that Hopf established strong maximum principles for
general second-order elliptic operators. Many of the important appli-
cations which we present make use of these results.

The maximum principle for parabolic operators takes a form
quite different from that for elliptic operators. In Chapter 3 we present
Nirenberg’s strong maximum principle for parabolic operators. We
then show, as in the elliptic case, that the principle may be used
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to yield results on approximation and uniqueness. We conclude the
chapter with a section on the maximum principle for a special class
of parabolic systems.

The fourth and last chapter treats maximum principles for hyper-
bolic operators. The forms that these principles take reflect the
structure of properly posed problems for hyperbolic equations. Both
the statements of the theorems and the methods of proof for hyper-
bolic operators are quite different from those for elliptic and parabolic
operators. In particular, the role of characteristic curves and surfaces
becomes evident in the hyperbolic case.

The maximum principle occurs in so many places and in such
varied forms that we have found it impossible to discuss some topics
which we had originally hoped to treat. For example, the maximum
principle for finite difference operators is omitted entirely. We do not
mention the maximum principle for the modulus of an analytic func-
tion, a subject replete with important and interesting applications.
Certain elliptic equations of order higher than the second are known
to exhibit a maximum principle. (See, for example, Miranda [1] and
Agmon [1].) We decided not to include this topic because advanced
techniques of partial differential equations are needed.

Most of the notations and symbols we employ are fairly standard.
A domain D in Euclidean space is an open connected set. The boun-
dary of D is usually designated @D. The symbols U and N are used
for the union and intersection of sets. Boldface letters denote vectors,
and the customary notations u,, and du/dx, are employed for partial
derivatives.

We frequently use the letter L followed by brackets to denote a
linear operator acting on functions. That is, L assigns to each function
u of a certain class, a function L{u] of another class. We say that L is
linear if, whenever L{u,] and L[u,] are defined, the quantities L{cu, +
Bu;] and aL[u,] + BL[u,] are also defined for all constants « and B,
and the equation L[awu, + Bu,] = aL[u,] + BL[u,] holds.

For those readers who may wish to explore the subject further, we
have included at the end of each chapter a bibliographical discussion
which contains historical references and a guide to other presentations
and further results and applications relevant to the chapter. Since we
have a continuing interest in the subject, we would enjoy hearing about
results—new or old—which are related to the subject of this book.

We wish to thank the Air Force Office of Scientific Research and
the National Science Foundation for their support of investigations
leading to a number of results published here for the first time.

M.H.P.
H.F. W.



CONTENTS

cuApTER 1. THE ONE-DIMENSIONAL MAXIMUM PRINCIPLE 1

1. The maximum principle, 1. 2. The generalized maximum principle,
8. 3. The initial value problem, 10. 4. Boundary value problems,
12. §. Approximation in boundary value problems, 14. 6. Approxi-
mation in the initial value problem, 24. 7. The eigenvalue problem,
37. 8. Oscillation and comparison theorems, 42. 9, Nonlinear oper-
ators, 47, Bibliographical notes, 49.

CHAPTER 2. ELLIPTIC EQUATIONS 51

1. The Laplace operator, SI. 2. Second-order elliptic operators.
Transformations, 56. 3. The maximum principle of E. Hopf, 61.
4. Uniqueness theorems for boundary value problems, 68. 5. The
generalized maximum principle, 72. 6. Approximation in boundary
value problems, 76. 7. Green’s identities and Green’s function, 81.
8. Eigenvalues, 89. 9. The Phragmén-Lindeldf principle, 93. 10, The
Harnack inequalities, 106. 11. Capacity, 122. 12. The Hadamard
three-circles theorem, 128. 13. Derivatives of harmonic functions, 137.
14. Boundary estimates for the derivatives, 141. 15. Applications of
bounds for derivatives, 145. 16. Nonlinear operators, 149. Biblio-
graphical notes, 156.

CHAPTER 3. PARABOLIC EQUATIONS 159

1. The heat equation, 159. 2. The one-dimensional parabolic operator,
163. 3. The general parabolic operator, 173. 4. Uniqueness theorems
for boundary value problems, 175. S. A three-curves theorem, 178.
6. The Phragmén-Lindeldf principle, 182. 7. Nonlinear operators, 186.
8. Weakly coupled parabolic systems, 188. Bibliographical notes, 193.

CHAPTER 4. HYPERBOLIC EQUATIONS 195

1. The wave equation, 195. 2. The wave operator with lower
order terms, 197. 3. The two-dimensional hyperbolic operator, 200.

ix



Contents

4. Bounds and uniqueness in the initial value problem, 208. 5. Rie-
mann’s function, 210. 6. Initial-boundary value problems, 213. 7. Es-
timates for series solutions, 215. 8, The two-characteristic problem, 218.
9. The Goursat problem, 231. 10. Comparison theorems, 232. 11. The
wave equation in higher dimensions, 234. Bibliographical notes, 239,

BIBLIOGRAPHY 240

INDEX 257



CHAPTER 1

THE ONE-DIMENSIONAL
MAXIMUM PRINCIPLE

SECTION 1. THE MAXIMUM PRINCIPLE

A function u(x) that is continuous on the closed interval* [a, b] takes
on its maximum at a point on this interval. If u(x) has a continuous
second derivative, and if u has a relative maximum at some point ¢ be-
tween a and b, then we know from elementary calculus that

#'(c) =0and u"(c) < 0. (6))
Suppose that in an open interval (a, b), u is known to satisfy a differ-
ential inequality of the form

Llul =u" + g(xu’ >0, 2

where g(x) is any bounded function. Then it is clear that relations (1)
cannot be satisfied at any point ¢ in (a, ). Consequently, whenever (2)
holds, the maximum of # in the interval cannot be attained anywhere
except at the endpoints g or b. We have here the simplest case of a maxi-
mum principle.

An essential feature of the above argument is the requirement that
the inequality (2) be strict; that is, we assume that u” + g(x)u’ is never
zero. In the study of differential equations and in many applications, such
a requirement is overly restrictive, and it is important that we remove it
if possible. We note, however, that for the nonstrict inequality

' + g(x)u' >0,
the solution # = constant is admitted. For such a constant solution the

maximum is attained at every point. We shall prove that this exception
is the only one possible.

*The symbol [a, b] denotes the closed interval a < x < b; the symbol (a, b) denotes
the open interval a < x < b.

1



2 The One-Dimensional Maximum Principle Chap. 1

THEOREM 1. (One-dimensional maximum principle). Suppose u =
u(x) satisfies the differential inequality

Llul=u" 4+ g(x)’ >0 for a < x < b, 3)
with g(x) a bounded function. If u(x) << M in (a, b) and if the maximum M
of u is attained at an interior point ¢ of (a, b), then u = M.

Proof. We suppose that u(c) = M and that there is a point d in (a, b)
such that u(d) < M. We shall show this leads to a contradiction. For
convenience let d > ¢. We define the function

z2(x) = e*="9 — 1
with @ a positive constant to be determined. Note that z(x) < 0 for
a < x < c, that z(x) > 0 for ¢ < x < b, and that z(c) = 0. (See Fig. 1.)

J,

O V b b )

FIGURE 1

A simple computation yields
L{z] = 2" + g(x)z’ = ala + g(x)]ex=-0,

We choose o so large that L{z] > 0 for a < x < d. That is, we select « so
that it satisfies the inequality

a > —g(x);
we can always do this since g(x) is bounded. We now define
w(x) = u(x) + ez(x),
where € is a positive constant chosen so that it satisfies the inequality

M — u(d)
z(d)

The assumption u(d) << M and the fact that z(d) > 0 make it possible to
find such an e. Then, since z is negative for ¢ < x < ¢, we have

wx)< Mfora< x <e;

e <<
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by the definition of e,
w(d) = u(d) + ez(d),
< u(d) + M — u(d),
so that
w(d) < M.
At the point c,
w(c) = u(c) + ez(c) = M.

Hence w has a maximum greater than or equal to M which is attained at
an interior point of the interval (a, d). But

L{w] = L[u] + €L[z] > 0,

so that by our previous result concerning the strict inequality (2), w can-
not attain its maximum in (a, d). We thereby reach a contradiction.
If d < ¢, we use the auxiliary function

z = e =9 |

with & > g(x) to reach the same conclusion.

The key to the above proof is the construction of the function z(x)
with the properties: (i) L[z] > 0; (ii) z(x) < O for x < ¢; (iii) zZ(x) >0
for x > ¢; (iv) 2(c) = 0. [If d is less than ¢, inequalities (ii) and (iii) are
reversed.] The function z is by no means unique. For example, the function

Ax)=(x —a)* — (c — a)

with « sufficiently large has the same four properties.

By applying Theorem 1 to (—u) we have the minimum principle which
asserts that a nonconstant function satisfying the differential inequality
L[u] < 0 cannot attain its minimum at an interior point.

The boundedness condition for g in the statement of Theorem 1 may
be relaxed. If g is bounded on every interval [, §'] completely interior to
(a, b), then the conclusion of Theorem 1 still holds. We simply apply the
argument on any subinterval [@’, '] containing the points ¢ and d in its
interior. Note that it is possible for g to be bounded on every closed sub-
interval of (a, b) and yet unbounded as x tends to @ or . For example,
&(x) = 1/(1 — x*) is bounded on every closed subinterval of (—1, 1). This
may seem to be a minor point, but it turns out that many of the differential
equations of mathematical physics have coefficients g which become un-
bounded at the endpoints of the interval of definition.

The method employed to prove Theorem 1 enables us to obtain
additional information about functions which satisfy an inequality such
as(3). We might imagine that a solution u of (3) could have the appearance
of the function shown in Fig. 2a. That is, the maximum of  on [a, b] is
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attained at g and «'(a) = 0. In fact, this situation never can occur. If the
maximum occurs at the left endpoint, the slope at that point must be
negative (Fig. 2b); if the maximum occurs at the right endpoint, the slope
at that point must be positive (Fig. 2c). The next theorem establishes
the precise result.

THEOREM 2. Suppose u is a nonconstant function which satisfies the
inequality «” 4+ g(x)u’' > 0 in (a, b) and has one-sided derivatives at a and b,
and suppose g is bounded on every closed subinterval of (a, b). If the maximum
of u occurs at x = g and g is bounded below at x = g, then u'(a) < 0. If the
maximum occurs at x = b and g is bounded above at x = b, then u'(b) > 0.

Proof. Suppose that u(a) = M, that u(x) < M for a < x < b, and that
for some point d in (a, b) we have u(d) < M. Once again we define an
auxiliary function

z(x) = e**® — | witha > 0.
We select @ > —g(x) for a < x < d so that L[z] > 0. Next, we form the
function
w(x) = u(x) + ez(x)
with e chosen so that
M — u(d)
z2(d)
Because L{w] > 0, the maximum of w in the interval [a,d] must occur
at one of the ends. We have
w(a) = M > w(d),
so that the maximum occurs at a. Therefore, the one-sided derivative of
w at g cannot be positive:
w'(a) = u'(a) + ez'(a) < 0.

O0<e<

However,
Z(@)=a>0,
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and therefore
u'(a) <0,
which is the desired result.
If the maximum occurs at x = b, the argument is similar.

Remarks. (i) If a function u which satisfies (3) has a relative maximum
at an interior point c, there is an interval (a;,b;) containing c in its interior
on which u(x) = u(c). Then Theorem 1 shows that u(x) = u(c) on this
interval. By applying Theorem 2 to all intervals having ¢ as an endpoint,
we see that the value u(c) at the relative maximum is actually the minimum
value of u on the interval (a,b).

(ii) If a function u# which satisfies (3) has relative minima at two points
¢; and ¢, of the interval (a,b), it must have a relative maximum at some
point between c; and c,. It then follows from Remark (i) that u(c ) =
u(cy) and that u(x) is constant on the interval (c;,cz).

(iii) A function satisfying (3) can have no horizontal point of inflection.
(u has a horizontal point of inflection at x = ¢ if ¥'(c) = 0 while u is strictly
increasing or strictly decreasing in some interval containing c¢.) If there
were such a point, we could select a subinterval with this point as an
endpoint (either a right or left endpoint, whichever is appropriate) on
which u attains its maximum at ¢. Then Theorem 2 would be contradicted.

(iv) A result analogous to Theorem 2 holds for solutions of L[u] <0,
yielding an associated minimum principle. We obtain this principle by
applying Theorem 2 to the function (—u).

(v) It is possible to prove Theorem 2 before Theorem 1. Then the
following argument yields Theorem 1 immediately. If ¥ has a maximum
at an interior point ¢, then u#'(c) = 0. Applying Theorem 2 to the intervals
(a, ¢) and (c, b), we conclude that u is constant.

(vi) The boundedness of g is required for the conclusion of Theorems
1 and 2. The equation

w + g(x)u' =0

with
—3/xforx+#0
g = {
0 forx=0
has the solution
u=1-—x

Theorem 1 is clearly violated on the interval —1 << x <1, as u has a
maximum at x = 0. Theorem 2 is violated on [0, 1] as ¥'(0) = 0. The
results of Theorems 1 and 2 are not applicable because g is not bounded
from below in (0, 1).



The One-Dimensional Maximum Principle Chap. 1

We now take up the more general differential inequality
L+ Wu)=u" + gx' + h(x)u > 0. 4)

The simplest examples show that at best we can only hope for a modified
form of the maximum principle; the equation

W +u=0

has the solution # = sin x which attains its maximum at x = /2. Even
the condition A(x) < 0 is not sufficient to yield an unrestricted maximum
principle. We observe that the equation

W —u=20
has the solution
u= —e* —e’,
which attains its maximum value (—2) at x = 0. We shall show that a
nonconstant solution of (4) with #< 0 cannot attain a nonnegative

maximum at an interior point.
It is easy to seg that if the strict inequality

(L + Bu] > 0, with h < 0,

holds in an open interval (g, b), then u cannot have a nonnegative maxi-
mum in the interior of (a,b). In fact, at any such maximum, we have
u' = 0,u" <0, hu < 0, contradicting the above strict inequality. This fact
enables us to extend Theorems 1 and 2 without altering the argument in
any way other than by choosing « so large that (L 4 A)[z] > 0.

The constant @ in the function e**~9 — 1 (or the function e~*=~® — |,
if d is to the left of ¢) must only satisfy

a’ 4+ ag(x) 4+ h(x)[1 — e =91 > 0
(or & — ag(x) + A(x)[1 — e*=-9] > 0).
Since A(x) < 0, it is sufficient in either case to select « so that
a® — alg(x)| + h(x) > 0.

This can certainly be done if g(x) and A(x) are bounded. Again we can
show that it suffices for them to be bounded on every closed subinterval
of (a, b). In this way we arrive at the next two theorems, which are exten-
sions of Theorems 1 and 2.

THEOREM 3. If u(x) satisfies the differential inequality

L+ hmul=u"+ g + h(x)u>0 4)

in an interval (a, b) with h(x) < 0, if g and 4 are bounded on every closed
subinterval, and if # assumes a nonnegative maximum value M at an interior
point ¢, then u(x) = M.
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Note that if 4 is not identically zero, then the only nonnegative
constant M satisfying (4) is M = 0.

THEOREM 4. Suppose that u is a nonconstant solution of the differential
inequality (4) having one-sided derivatives at a and b, that #(x) < 0, and that
g and h are bounded on every closed subinterval of (a, b). If u has a non-
negative maximum at ¢ and if the function g(x) + (x — a)h(x) is bounded
from below at x = a, then u'(a) < 0. If « has a nonnegative maximum at b
and if g(x) — (b — x)h(x) is bounded from above at x = b, then «'(b) > 0.

In extending the proof of Theorem 2 to Theorem 4, we need only
observe that

(L + h)[ea(x—a) . l] — ea(x—a)[az + ag + h(l _ e-a(z—a))]

> ea(z-a)[a? + ag + a(x — a)h]

COROLLARY. If u satisfies (4) in (a, b) with h(x) < 0, if u is continuous
on [a, b], and if u(a) < 0, u(b) < 0, then u(x) < 0 in (a, b) unless u = 0.

EXERCISES

1. Prove Theorem 1 by employing the function z(x) = (x — a)* — (¢ — a)* instead
of z(x) = e*=-¢) — 1,

2. The function u = cos x satisfies 4" + gfx)u’ = 0 with g(x) = —cot x, and yet
u has a maximum at x = 0. Explain. Find a function # which has a horizontal
point of inflection at x = 0 and which satisfies a differential inequality of the
form u” + g(x)u’ > 0.

3. Show that if #” 4 e* = —x for 0 < x < 1, then u cannot attain a minimum
in (0, 1).

4. Show that a solution of u” — 2 cos (¥’) = 1 cannot attain a local maximum.
5. Consider the problem
Wtew=—1for0<x<l,
u(0) = u(1) = 0.

Verify that the solution has no minimum in (0, 1). Also show that u'(0) >0,

¥'(1) <0, '
6. Consider the inequality

W+ (a/xu’ + (B]xDu >0, 0<x<1,

with « and 8 constant. For what values of  and 8 are Theorems 3 and 4
applicable? Verify by considering solutions of the form # = x™, What is the
result if the interval is —1 <x < 1?
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SECTION 2. THE GENERALIZED MAXIMUM PRINCIPLE

We investigate the differential inequality
L+ hul=u"+gxn' +h(xu=>0, a<x<b, 1)
without the requirement that A(x) be nonpositive. Suppose we can find a

function w which has a continuous second derivative on [a, ] and which
satisfies the inequalities

w > 0 on [a, b], 2)
(L + W[w] < 0in (a,b). 3)
We define the new dependent variable

u
v=—.
w

A simple computation yields
L + Blu]l =L + h)vw] = wo" + 2w’ + gwl' + (L + h)[wlv > 0.

Dividing by the positive quantity w, we see that v satisfies the differential
inequality

o+ (2% +8)v + %(L + Bwlv > 0. (4)

Inequality (4), when taken in conjunction with (2) and (3), shows that
v = u/w satisfies Theorems 3 and 4.

The argument above depends on the existence of a function w which
satisfies (2) and (3). We shall now show that if A(x) is bounded, if g(x) is
bounded from below, and if the interval [q, ] is sufficiently short, then
there is a function w which fulfills inequalities (2) and (3). In fact, such
a function is given by

=1-B8(x—a), %)

if the constant B is determined suitably. To see this, we compute
(L + Blw] = —28[1 + (x — a)g(x) + Hx — af*h(x)] + K(x).  (6)
Since, by assumption, g and % are bounded from below, there are constants

G and H such that g > G and h > H. We suppose a and b are so close
together that

14+ (x—a)G+ Hx—a)H>0fora<<x<b.
Since h(x) is also bounded from above, we can select B so that
1 h(x) :|
B> [1 T G—a6 +ix—aHl"
Then, because of (6), we have (L + A)[w] <O in (a,b). If the length
(b — a) is also so small that
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BB —ay <1,

then (5) shows that w > 0 on [a, b]. In this way, the function w with the
desired properties may always be constructed.

The preceding discussion leads to the following generalized maximum
principle.

THEOREM 5. Suppose the operator L + 4 is given by (1) with A(x)
bounded and with g(x) bounded from below. For any sufficiently short interval
[a, b], a function w can be found which satisfies (2) and (3). Then if u is any
function satisfying (1) in (q, b), the function u/w satisfies the maximum
principles as given in Theorems 3 and 4.

Remark. Theorem 5 shows that a function u which satisfies (1) cannot
oscillate too rapidly, for if u > 0 between two of its zeros x = a and
x = b, then u/w must have a positive maximum between them. Hence,
Theorem 5 is violated unless the distance b — a between these zeros is so
large that this theorem doesn’t hold. We thus find that u can have at most
two zeros (between which # is negative) in any interval (a, b) where
Theorem 5 holds.

If u is a solution of the equation ¥” + g(x)u’ + h(x)u = 0, we can apply
the same reasoning to both ¥ and —u to find that u can have at most one
zero in any interval (q, b) where Theorem 5 holds.

Let r(x) be a solution of the differential equation
r + g(x)r + h(x)r = 0, @)

with g and s bounded functions. Suppose that r is not identically zero,
and that

Ha) =0.
In the light of the remark following Theorem 5, we know that » cannot
vanish for some distance to the right of a. If r has any zeros to the right

of a, we denote the first one by a* and call it the conjugate point of a. Thus
r is of one sign in the interval (a, a*), and for convenience we assume that

Kx) > 0fora < x < a*.

If w > 0 on [a, a*], the function r/w vanishes at ¢ and at a* and is
positive in (a, a*). Hence it has a maximum in (g, a*). Therefore by
Theorem 5, w cannot satisfy (3). On the other hand, if b is any point
in (@, a*), a function w can be found so that r/w satisfies the maximum
principle of Theorem 5. To see this, we observe first that r(x) is bounded
from below by a positive number on any subinterval [c, b] contained in
(@, a*). Consequently, for sufficiently small e > 0, the function

w(x) = r(x) + e[2 — ed(:-a)]



