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Preface

These proceedings record the papers presented at the second International Conference
of B and Z Users (ZB 2002), held on 23-25 January 2002 in the city of Grenoble in
the heart of the French Alps. This conference built on the success of the first confe-
rence in this series, ZB 2000, held at the University of York in the UK. The location of
ZB 2002 in Grenoble reflects the important work in the area of formal methods carried
out at the Laboratoire Logiciels Systémes Réseaux within the Institur d’Informatique
et Mathématiques Appliquées de Grenoble (LSR-IMAG), especially involving the B
method.

B and Z are two important formal methods that share a common conceptual ori-
gin; each are leading approaches applied in industry and academia for the specification
and development (using formal refinement) of computer-based systems. At ZB 2002
the B and Z communities were brought together to hold a second joint conference that
simultaneously incorporated the 13th International Z User Meeting and the 4th Inter-
national Conference on the B method. Although organized logistically as an integral
event, editorial control of the joint conference remained vested in two separate but coo-
perating program committees that respectively determined its B and Z content, but in a
coordinated manner.

All the submitted papers in these proceedings were peer reviewed by at least three
reviewers drawn from the B or Z committee depending on the subject matter of the
paper. Reviewing and initial selection were undertaken electronically. The Z committee
met at South Bank University in London on 27th September 2001 to determine the final
selection of Z papers. The B committee met on the morning of 28th September 2001
at the Conservatoire National des Arts et Métiers (CNAM) in Paris to select B papers.
A joint committee meeting was held at the same location in the afternoon to resolve
the final paper selection and to draft a program for the conference. Sergiy Vilkomir of
the Centre for Applied Formal Methods (CAFM) at South Bank University aided in the
local organization of the Z meeting. Véronique Viguié Donzeau-Gouge helped in the
organization of the meetings at CNAM.

The conference featured a range of contributions by distinguished invited speakers
drawn from both industry and academia. The invited speakers addressed significant
recent industrial applications of formal methods, as well as important academic advances
serving to enhance their potency and widen their applicability. Our invited speakers for
ZB 2002 were drawn from Finland, France, and Canada. Ralph-Johan Back, Professor
of Computer Science at Abo Akademi University and Director of the Turku Centre for
Computer Science (TUCS) has made important contributions in the development of the
refinement calculus, influential and relevant to many formal methods, including B and
Z. Pierre Chartier of RATP (Régie Autonome des Transports Parisiens), central in rail
transport for Paris, is a leading expert in the industrial application of the B method. Eric
C.R. Hehner, Professor of Computer Science at the University of Toronto, has always
presented his novel ideas for formal methods using an elegant simplicity.
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Besides its formal sessions, the conference included tool demonstrations, exhibitions,
and tutorials. In particular, a workshop on Refinement of Critical Systems: Methods,
Tools, and Experience (RCS 2002) was organized on 22 January 2001 with the support
of the EU IST-RTD Project MATISSE: Methodologies and Associated Technologies for
Industrial Strength Systems Engineering, in association with the ZB 2002 meeting. Other
conference sessions included a presentation on the status of the international Z Standard,
in its final stages of acceptance. In addition, the International B Conference Steering
Committee (APCB) and the Z User Group (ZUG) used the conference as a convenient
venue for open meetings intended for those interested in the B and Z communities
respectively.

The topics of interest to the conference included: Industrial applications and case stu-
dies using Z or using B; Integration of model-based specification methods in the software
development lifecycle; Derivation of hardware-software architecture from model-based
specifications; Expressing and validating requirements through formal models; Theo-
retical issues in formal development (e.g., issues in refinement, proof process, or proof
validation, etc.); Software testing versus proof-oriented development; Tools supporting
tools for the Z notation and the B method; Development by composition of specificati-
ons; Validation of assembly of COTS by model-based specification methods; Z and B
extensions and/or standardization.

The ZB 2002 conference was jointly initiated by the Z User Group (ZUG) and the
International B Conference Steering Committee (APCB). LSR-IMAG provided all local
organization and financial backing for the conference. Without the great support from
many local staff at LSR-IMAG and others in Grenoble, ZB 2002 would not have been
possible. In particular, we would like to thank the Local Committee Chair, Marie-Laure
Potet. ZB 2002 was supported by CNRS (Centre National de la Recherche Scientifi-
que), INPG (Institut National Polytechnique de Grenoble), Université Joseph Fourier
(Grenoble), and IMAG. ClearSy System Engineering, Gemplus, the Institut National de
Recherche sur les Transports et leur Securité (INRETS), and RATP provided sponsor-
ship. We are grateful to all those who contributed to the success of the conference.

On-line information concerning the conference is available under the following Uni-
form Resource Locator (URL):

http://www-1sr.imag.fr/zb2002/

This also provides links to further on-line resources concerning the B method and Z
notation.

We hope that all participants and other interested readers benefit scientifically from
these proceedings and also find them stimulating in the process.

November 2001 Didier Bert
Jonathan Bowen

Martin Henson

Ken Robinson
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Theories, Implementations, and Transformations

Eric Hehner and Ioannis T. Kassios

Department of Computer Science, University of Toronto,

Toronto ON M35S 3G4 Canada
{hehner, ykass}@cs.utoronto.ca

Abstract. The purpose of this paper is to try to put theory presentation and
structuring in the simplest possible logical setting in order to improve our
understanding of it. We look at how theories can be combined, and compared
for strength. We look at theory refinement and implementation, and what
constitutes proof of correctness. Our examples come from both the functional
style and imperative (state-changing) style of theory. Finally, we explore how
one implementation can be transformed to another.

1 Introduction

A classic paper by Burstall and Goguen in 1977 [2] taught us to think about data types
used in computer programs as logical theories, presented by axioms, whose properties
can be explored by logical deduction. The following year, a paper by Guttag and
Horning [4] developed the idea further, showing us the algebraic properties of data
types presented as theories. Another important contribution came from Abrial [8] in
the design of Z, and more recently B [1]. He brought to theory design all the
structuring and scoping that programming languages provide, enabling us to build
large theories by composing smaller ones. With the work of the Z and B community,
and a change of terminology, theory design became an important part of software
development.

The purpose of this paper is to try to put theory presentation and structuring in the
simplest possible logical setting in order to improve our understanding of it. It is not
the purpose of this paper to provide a notation or language for practical engineering
use; for that task the Z and B community are the leaders.

2 Notation

Notation is not the point of this paper; as much as possible, we will use standard, or at
least familiar, notations. The two booleans are T and L, and the boolean operators
are ~Av=%# = ¢ . The same equality = and unequality # will be used with any
type. we also use a large version = = < of equality and implication that are
identical to the small version except for their precedence; the only purpose is to save

D. Bert et al. (Eds.): ZB 2002, LNCS 2272, pp. 1-21, 2002.
© Springer-Verlag Berlin Heidelberg 2002



2 E. Hehner and 1. T. Kassios

a clutter of parentheses. The empty bunch is null . The comma (,) is bunch union,
which is commutative, idempotent, and associative. The colon (:) is bunch inclusion.
For example,

2,9:0,2,59

is a boolean expression with value T because the left operand of colon is included in
the right operand. We use the asymmetric notation x,..y for the bunch of integers
from and including x up to but excluding y . The empty list is [nil], and the list [2;
6; 4; 8] contains four items. The notation [x;..y] is used for the list of integers from
and including x up to but excluding y . Lists are indexed from 0. List formation
distributes over bunch union, so if nar is the natural numbers, then [nat] is the list
whose one item is the bunch of natural numbers, or equally, the bunch of all lists
whose one item is a natural number. A star denotes repetition of an item, so [*nat] is
all lists of natural numbers. We use # for list length. We use a standard lambda
notation Ax: D- fx for functions, and juxtaposition for function application. We use
A—B for the bunch of all functions with domain at least A and range at most B .
Quantifiers V 3 apply to functions, but for the sake of familiarity they replace the
lambda.
Here are all the notations of the paper in a precedence table.

0. T L () [] numbers names (true, false, precedence, list brackets)
1. juxtaposition (function application) right-to-left
2. #* > (list length, item repetition, function space) right-to-left
3. + -+ (addition, subtraction, catenation) left-to-right
4, D (sequencing of list items) associative
5. RV | (bunch union, function selection) associative
6. = % < > < 2 : (equality, unequality, order, inclusion) continuing
7. - (negation) right-to-left
8. A (conjunction) associative
9. v (disjunction) associative
10. = & (implication) continuing
1. = (assignment)
12. if then else (if then else)
13. ; (sequential composition) associative
14. A V- 3 (function, quantifiers)
15. = D= & (equality, implication) continuing

To say that = is continuing is to say that @ = b = ¢ neither associates to the left nor
associates to the right, but means a = b A b = ¢ . A mixture of continuing operators
can be used; for example, a < b <c means a <b » b < c . For further details on

notation and basic theories please consult [5] or [6].
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3 Theories

Here is a little theory presented in a style similar to [2] and [4].

TheoryO: names: chain, start, link, isStart
signatures: start: chain
link: chain—chain
isStart: chain—bool
axioms: isStart start
Vc: chain: — isStart (link ¢)

Theory0 introduces four new names into our vocabulary. The signatures section tells
us something about the role these names will play in the theory. Then the axioms tell
us what can be proven, what are the theorems, in this theory.

The first problem with this presentation of TheoryO is that names cannot be
attached to theories. For example, this theory uses the name bool , and many others
do too, and each of them is telling us something about bool. And when we build large
theories by composing smaller ones, no particular theory in the composition can claim
a name as its own. And it isnt just names that get introduced by theories; symbols
like <, or in our example Vand — , and even =, are used in many theories, and
each of them is telling us something more about the use of those symbols. Names and
symbols are defined by their use in all theories where they appear; and we can always
add more theories to the collection. As part of a library of theories, we need a linked,
browsable dictionary of names and symbols, telling us which theories use them. This
dictionary should be generated automatically from the library of theories, so that it is
always up-to-date. The first change to theory presentation is to remove the list of
names.

The next change to theory presentation is to consider a signature to be a kind of
boolean expression. One of the uses of Bunch Theory is as a fine-grained type theory.
The boolean expression

5:0,3,5,8

has value T and says, “ 5 is included among 0, 3, 5, 8 ”. But we can also read it as
5 hastype 0,3, 5, 8. Defining nat as the bunch of all natural numbers, the boolean
expression 5: nat has value T . And so x: nat can be given as an axiom about x .
So too x, y: nat can be an axiom, just as 3, 5: 0,3, 5,8 has value T. The
expression A—B consists of all functions with domain at least A and range at most
B . For example,

(An: nat n+1) - nat—nat

has value T . And so f nat—mnat can be an axiom about f. By “currying”, A—B—C
consists of two-variable functions, and so on.
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The final change to theory presentation is just to write all the axioms as one big
axiom by taking their conjunction. Now a theory consists of one single axiom, so
there is now no difference between a theory and an axiom. TheoryO can be written as
follows.

Theory0 = start: chain

link: chain—>chain

isStart: chain—bool
isStart start

Ye: chain' — isStart (link c)

> > > >

4 Composition

The original paper by Burstall and Goguen [2] presents four operations on theories:
combination, enrichment, induction, and derivation. To illustrate theory combination,
here is a second theory.

Theoryl = start: chain
A link: chain—chain
A Vc: chain: start # link ¢
A Ve, d: chain- (c=d) = (link ¢ = link d)

Theory0 and Theoryl have much in common, but also some differences; there are
theorems in each that are not theorems in the other. With our form of theory
presentation, we can combine the two theories with ordinary boolean conjunction.

Theory2 = Theory0 A Theoryl

Burstall and Goguen's next theory operation, enrichment, is also just conjunction, but
with further axioms rather than with a named theory. Here is an example.

Theory3 = Theory2
A Vc: chain- start < ¢ < link ¢

The next of Burstall and Goguen's theory operations adds a structural induction
scheme over the generators of the new data type. For us, it is again just conjunction of
another axiom.

Theory4 = Theory3
A VP: (chain—bool):
P start A (Vc: chain' P ¢ = P (link ¢))
= Yec: chain- P ¢
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That is the familiar form of induction; a neater, equivalent form is as follows.

Theoryd = Theory3
N YC start, link C: C = chain: C

To briefly explain this axiom, most operators and functions distribute over bunch
union. For example,

(2.5,9+1 = (3,6, 10)
So link C consists of all the results of applying link to things in C. The axiom says
that if srart and all the links of things in C are included in C , then chain is
included in C. The antecedent can be rewritten as

start: C A link: C—C

and, regarding C as the unknown, chain is one solution. The axiom therefore says
that chain is the smallest solution.

Burstall and Goguen's final operation on theories, derivation, allows part of a theory
to be hidden from the theory users. For us, that's existential quantification.

TheoryS = Astart: chain' Theory4

Theory5 has all the same theorems as Theory4 minus those that mention start . If
we want to keep all the theorems of Theory4 but rename start as new , define

Theory6 = start: chain- start=new A Theory4

We can combine theories with other boolean operators too, such as disjunction and
implication. For example,

Theory7 = (Vc: chain- new < ¢) = Theory6

This makes Theory7 such that if we had the axiom Vc¢: chain® new < ¢ then we
would have Theory6 . In a vague sense, Theory7 is Theory6 without Ve: chain
new <c . To be precise, if we take Theory7 and add the axiom Vc: chain- new <c ,
we get back Theory6 .

Theory6 = Theory7 A ¥c: chain- new < ¢

New theories are not always built by additions to old theories; sometimes they are
built by deletions. One of the problems with object-orientation is that, although
subclassing allows us to add attributes, there is no way to delete attributes and make a
superclass, nor to make an interclass between two existing classes.
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These examples illustrate that our theory presentation is both a simplification and a
generalization of the early work. By reducing theories to boolean expressions we
understand them in the simplest possible way, and we allow all combinations that

make logical sense.

5 Refinement and Implementation

A theory can serve as a specification of a data type, and of computation in general.
Specifications can be refined, usually by resolving nondeterminism. Specification A
refines specification B if all computer behavior satisfying A also satisfies B . If
theories are expressed as single boolean expressions,

theory A refines theory B means A=B

theory B isrefined by theory A means B&A
Refinement is just implication. So far, we have

Theory6 = Theory7
Theory4 = Theory$
Theory4 = Theory3
Theory3 = Theory2
Theory2 = Theoryl
Theory2 = Theory0

When we define a theory, and especially when we combine theories, there is always
the danger of inconsistency. The only way to prove the consistency of a theory is to
implement it. As software engineers, our goal is to design useful theories (they must
be consistent to be useful), and to implement them. A theory is said to be
implemented when all names and symbols appearing in it have been implemented. A
name or symbol is implemented by defining it in terms of other names and symbols
that are implemented. Ultimately, the computing machinery provides the ground
theory on top of which all other theories are implemented. (To logicians, an
implementation is known as a “model”, and the ultimate machinery is usually taken to
be set theory, although they might claim that the model is the sets themselves and not
set theory.)

An implementation can be expressed in exactly the same form as a theory: a
boolean expression. Here is an example implementation of Theory4 , assuming that
nat is an implemented data type, and that functions are implemented.

Imp = chain = nat
A start = 0
A isStart = (Ac: nat- c=0)

A link = (Ac: nat c+1)
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An implementation is also a theory, but of a particular form. It is a conjunction of
equations, and each equation has a left side consisting of one of the names needing an
implementation, and a right side employing only names and symbols that are already
implemented.

The benefit in expressing an implementation in the same form as a theory is that the
proof of correctness of the implementation is now just a boolean implication. We
prove that Imp correctly implements Theory4 by proving

Imp = Theory4

Implementation is just refinement by an implemented theory. By the transitivity of
implication we have immediately that Imp also implements TheoryS , Theory3 ,
Theory2? , Theoryl , and Theory0 .

6 Functional Stack

From a typical mathematician’s viewpoint, a stronger theory is a better theory because
it allows us to prove more. But the theory must not be so strong as to be inconsistent,
for then we can prove everything trivially. The game is to add axioms, approaching
the brink of inconsistency as closely as possible without falling over. For example,
here a strong but consistent theory of stacks.

Stack0 = X empty: stack

push: stack—>X —stack

pop: stack—stack

top: stack—X

(VS empty, push S X: S = stack: S)
(Vs: stack: Vx: X- push s x # empty)
(Vs, t: stack: Vx, y: X-
pushsx=pushty = s=t nx=y)
(Vs: stack: Vx: X- pop (push s x) = 5)
A (Vs: stack: ¥x: X- top (push s x) = x)

> > > > > >

>

And here is an implementation, assuming lists, functions, and integers are already
implemented.

Stack = stack = [*int]
A empty = [nil]
A push = (As: stack: Ax: int s"[x])
A pop = (As: stack- if s=empty then empry else s [0;.#s—1])
A top = (As: stack: if s=empty then 0 else s (#5—1))



