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Preface

This exposition of Galois theory was originally going to be Chapter 1 of the
continuation of my book Fermat’s Last Theorem, but it soon outgrew any
reasonable bounds for an introductory chapter, and I decided to make it a
' separate book. However, this decision was prompted by more than just the
length. Following the precepts of my sermon ““Read the Masters!” [E2], 1
made the reading of Galois’ original memoir a major part of my study of
-Galois theory, and I saw that the modern treatments of Galois theory lacked
much of the simplicity and clarity of the original. Therefore I wanted to
write about the theory in a way that would not only explain it, but explain it
in terms close enough to Galois’ own to make his memoir accessible to the
reader, in the same way that I tried to make Riemann’s memoir on the zeta
function and Kummer’s papers on Fermat’s Last Theorem accessible in my
earlier books, [E1] and [E3]. Clearly I could not do this within the confines
of one expository chapter.

And so I decided to write a short book—a sort of volume 14 of my work
on Fermat’s Last Theorem—devoted entirely to the basics of Galois theory.
There is very little in this book that is not already to be found, however
concisely and however lacking in proof, in Galois. The one major exception
is the material on factorization of polynomials’ (§§49—61), which is due to
Kronecker and which seems to me to be necessary to give clear meaning
to the computations with roots of algebraic equations that Galois and
Lagrange performed without inhibition and without comment.

“ The crux of Galois theory is, appropriately enough, Galois’ Proposition I,
which is the following characterization of what we call the Galois group of
an equation. Let a, b, c, . . . be the n roots (assumed distinct) of an algebraic
equation f(x) ='0 of degree n. The Galois group is a certain subgroup of
the group of permutations of the roots a, b, ¢, . . . . Galois used it to deter-
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mine whether a given polynomial in the roots g, b, c, . . .} has a known
value—in modern parlance, to determine whether F(a, b, ¢, ...) is in the
‘ground field. The characteristic property of the Galois group is that
F(a, b, c, . .™ has a known valtie if and only if

Fa, b, c,...)= F(Sa, $b, Sc, . . .)

for all permutations S of the Galois group. Galois proved the existence and
uniqueness of a group with thi property by constructing it, using what
later became known as a Galois resolvent. {This characterization of the
Galois group will be more recognizable to readers familiar with modern
formulations of Galois theory after they read the first corollary in §41. See
also §63.) .

The major theorems of Galois, such as the theorems on the solvability of
equations by radicals, flow from the study of the relationship between
. algebraic equations f(x) = 0 and the groups associated with them. Of
particular importance is the analysis of the way in which the group is reduced
when the field of knc)wn quantities is extended (Galois’ Propositions II-IV).

Some recent“texts on Galois theory place mistaken emphasis on the
question of finding explicit quintic equations, with rational coefficients,
which cannot be solved by radicals. This is a moderately interesting result
(one not covered in this book) but it is not a key theorem of Galois theory.
Galois showed that an algebraic equation is solvable by radicals if and only
if the associated group is solvable. A given quintic with rational coefficients
can therefore be tested for solvability. Abel’s thcorem that the general
quintic is not solvable states that the equation x5+ Bx* + Cx* + Dx* +
Ex + F = 0—an equation with coefficients in the field Q(B, C, D, E, Fy
obtained by adjefrmg five transcendental elements (variables) to Q—is not
solvable by radicals. (In Galois theory this follows from the fact that the
Galois group of this equation is the full group of 120 permutations of the
five roots.) In other words, no field extension of Q(B, C, D, E, F) obtained
by a succession of adjunctions of radicals can ever contain a root of the given
equation. This is what it means to say that the quadratic formula

-B+ . /B*-4C
X = - 7 y

and the much more complicated formulas for the cubic and quartic equations
(Exercises | and 2 of the Sixth Set) have no generalization to the quintic
equation.

Having just mentioned the exercises, I hasten to reassure the reader that
the exercises are not essential to the book. The only proofs that are relegated
to the exercises are those that I believe to be too easy, or too much like other
proofs already covered, to spend time on in the text. Naturally, the reader
who does the exercises will have a far greater understanding of the subject,
and will learn many things not contained in the text, but to do all the exercises
will surely consume an enormous amount of time. The reader who has just
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read the text will have covered all the propositions and ﬂhods of proof
that I consider to be basic to Galois theory. - §

_ What preparation do 1 assume on the part of the reader? Because termi-
nology changes so much from decade to decade and from field to field, 1
have tried to assume as little terminology as possible. (When 1 completed
my undergraduate degree 25 years ago, I had bad courses in advanced
calculus, determinants and matrices, differential equations, measure theory,
complex variables, etc., but I had never encountered the definition of a group
or an abstract vector space.) However, I have assumed a certain degree of
mathematical experience on the part of the reader, by which 1 mean experi-
ence in computation and mathematical reasoning. The main theorems of
Galois theory state, in the last analysis, that certain computations with
polynomials produce certain results. In most cases the computations are
too long to do, and the idea of the computation is what counts, not any
particular cases of it. The reader should have enough mathematical experi-
ence (and talent) to be able to conceive a general computation and its
properties after having done a few simple examples.

The approach of the book is consistently algebraic and con.vtmctwe “The
fields considered are those obtained from the rational numbers by adjoining
a finite number of algebraic and/or transcendental elements. (Fields with
characteristic p are mentioned only in passing. Fields obtained by completion
processes—the real and complex numbers, algebraic extensions of p-adic
fields—are not considered at all.) The constructive approach implies that
theorems mean what they say. For example, when a theorem says that an
equation is solvable, the proof must give a procedure—however impractical
—for constructing a splitting field by the adjunction of radicals. I believe
that this approach is very much in tune with Galois’ conception of the
subject.

Liouville, in the “Avertissment” preceding his publication of Galois’
works in 1846, writes of the ““vivid pleasure” he enjoyed when he realized
that Galois’ methods were correct and that his theorems could be rigorously
proved. I experienced what I imagine was a similar—if lesser—-pleasure
when I realized that two parts of Galois’ memoir, which I at first thought
were mistakes, are perfectly correct. These are the places where Galois later
.wrote “On jugerd”, in the case of the first, and “Something in this proof
needs to be completed—1 haven't the time” in the case of the second.:

The *“ On jugera” passage is the one where Galois proves the crucial lemma
stating that any rational functjon of the roots can be expressed as a rational
function of the Galois resolvent. Poisson had called Galois’ proof ‘“‘in-
sufficient™ but pointed out that the lemma followed from a theorem of
Lagrange. Galois, rather than elucidate his proof, laconically replied,
““That remains to be seen ™ (freely translated). My opinion is in §37.

The famous statement “I haven’t the time” occurs in a marginal note
Galois made, probably on the night before the duel, with regard to the proof
of his Proposition I1, which he said needed to be ““completed . Although his
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proof appears wrong at first because he adjoins one root r of an equation
and then uses other roots of the equation, and although Liouville [G], p. 492]
found it necessary to circumvent Galois’ proof entirely, I believe now that
the proof given in §44 is very close to what Galois had in mind, and that the
. marginal nots was merely prompted by the fact that he had changed the
statement of the Proposition, and realized that the proof needed to be
amended accordingly. (In fact, the Proposition, as stated, is false. The index
of the subgroup need not be 1 or p when p is not prime—it must simply be a
divisor of p.) A similar situation occurred with Proposition III, where
Galois again changed the statement, making it more general, at the last
minute, and had only time enough to say, “One will find the proof.”
Finally, I hope itis superﬂuous to add that, while I have said above that
most of what is in this book is already in Galois, the converse is far from
true. The book contains a rather complete account of Galois’ main memoir,
“Mémoire sur les conditions de résolubilité des équations par radicaux”
(Appendix 1 contains a translation of this memoir) but it does not make
any claim to cover his other works. These contain, I am told, remarkable
insights into a pumber of topics, including the theory of Abelian functions
and finite simple groups. I return to my perennial refrain: Read the masters.
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Galois

§1 Great mathematicians usually have undramatic lives, or, more pre-
cisely, the drama of their lives lies in their mathematics and cannot be appreci-
ated by nonmathematicians. The great exception to this rule is Evariste Galois
(1811-1832). Galois’ life story—what we know of it—is like a romantic novel.
Although he was making important mathematical discoveries when he was
still in secondary school, he was denied admission to the Ecole Polytechnique,
which was the premier institution of higher learning in mathematics at the
time, and the mathematical establishment ignored, mislaid, lost, and failed
to understand his treatises. Meanwhile, he was persecuted for his political
dctivities and spent many months in jail as a political prisoner. At the age of
20 he was killed in a duel involving, in some mysterious way, honor and a
woman. On the eve of the fatal duel he wrote a letter to a friend outlining his
mathematical accomplishments and asking that the friend try to bring his
work to the attention of the mathematical world. Against great odds, Galois’
few supporters did finally, 14 years after his death, succeed in finding an
audience for his work, and portions of his writings were published in 1846 by
Joseph Liouviile in his Journal de Mathematiques. After that, recognition of
the great importance of his work came very quickly, and Galois began to be
regarded, as he is today, as one of the great creative mathematicfans of all
time. )

§2 The purpose of this book is to convey the mathematical drama of
Galois’ work, so there will be no more mention of his short, unhappy life,® but

* For biographical information see Dupuy [D1], Kicrnan [K1], Rothman [R1].
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one point needs to be made about its most dramatic feature, namely, the fact
that Galois was able, at such an early age and without the benefit of any
formal higher education, to make discoveries that would win him lasting
fame. Surely many aspiring young mathematicians have been discouraged by
Galois’ story, saying to themselves something like, “ Here I am already x years
old, x — 20 years older (younger) than Galois was when he died, and,
although 1 like math and have always done well at it, I would no more be
able to make a great discovery than I would be able to swim the Atlantic.”
How was Galois able to do it ? Was he blessed with some superhuman gift that
put him in a class apart? I think not. Of course, talent is essential, and few are
as talented as Galois. Still, talent alone is not enough. Galois had to reach the
point where he knew enough and had enough techniques at his command
to be able to move beyond what had been done before. The secret of how he
was able to do this is contained, I believe, in a passage in Dupuy’s biography
of Galois [D1, p. 206]: “Elementary algebra books never satisfied Galois
because he didn’t find in them the stamp of the inventors; right from his first
year of mathematics he turned to Lagrange.”

Lagrange’s Réflexions sur la Résolution Algébrique des Equations (1771)
is the treatise of Lagrange most likely to have inspired the creation of Galois
theory. It is an extraordinary work, written in a relaxed, discursive style
that was rather common in the eighteenth century, but is virtually unknown in
mathematical writing today. It discusses at length the central question of the
time in the theory of algebraic equations, namely: What is the essence of the
methods by which it is possible to solve equations of degrees 2, 3, and 4? Is it
possible to extend these methods to equations of higher degree and, if not, why
not? Lagrange gave an insightful answer to the first question, describing the
solutions of equations of low degree in terms of a unified technique now -
known as the technique of the Lagrange resolvent.* His answer to the second
question, on the other hand, is quite inconclusive. He shows that the tech-
nique does not apply in an obvious way to equations of degree 5 or -higher,
and he discusses some techniques— notably the technique of permuting the
roots of an algebraic equation-=which are relevant to the applications of
Lagrange resolvents to equations of higher degree, but he gives no final
answer. In short, it is a paper that gives the reader as much information about
the problem as the author can provide and indicates the direction which the
author {eels further work should take. Viewed in this way, Lagrange’s paper
scems the perfect source of inspiration for a Galois.

Thus, in order to appreciate Galois’ theory, it is natural first to review
Lagrange’s work. We will go much farther back than that—all the way to
ancient Babylon—and then review a few other aspects of the development of
algebra before discussing the-main features of the work of Lagrange and then
moving on to his successors, Gauss and Galois. .

* A very similar technique was used a few months earlier by Vandermonde (see §15), but this was
unknown to Lagrange.



§3. Quadratic Equations

Quadratic Equations 1700 B.C.

§3 Archeological research in the twentieth century has revealed the
surprising fact that the peoples of Mesopotamia in the period around*
1700 B.c. had an advanced mathematical culture, including an excellent
sexagesimal system of arithmetic and a knowledge of the Pythagorean
theorem (a millennium before Pythagoras!). Of particular relevance to the
theory of equations and Galois theory is the knowledge in this ancient
culture of a method for the solution of quadratic equations.

According to Neugebauer [N1], the technique commonly used in the
Babylonian texts to solve quadratic equations can be viewed as a reduction to
a normal form, followed by a method for solving. the normal form. The
normal form was to find two numbers given their sum and their product. In
modern algebraic notation, this can be stated: Given two numbers p and s,
and given that xy = p,x + y = s, find x and y. The steps by which the Baby-
lonians solved this problem are as follows:

1. Take half of s.

2. Square the result.

3. From this subtract p.

4. Take the square root of the result.

5. Add this to half of s; this is one of the two numbers and the cther is s minus

this one.

For example, if the sum is 10 and the product is 21 then the successive
steps give §, 25,4, 2, 7and 10 — 7 = 3. Thus the two numbers are 7 and 3.

That this normal form is indeed a quadratic equatdn can be seen by
multiplying the equation s = x + y by x to find sx = x? + xy = x> + p.
In other words, x is a solution of the quadratic equation x> — sx + p = Qand,
by symmetry, so is y.

Conversely, the solution of any quadratic equation can.in our notation
be viewed as the solution of a problem in normal form. Specifically, the equa-
tion ax? + bx + ¢ = 0 can be rewritten as x* + (c/a) = —(b/a)x and the
solution of this equation is equivalent to finding two numbers whose sum is
—~b/a and whose product is c/a. The Babylonians could not reduce all
quadratic equations to a single normal form, however, because their arith-
metic did not include negative numbers. To deal with this fact, they had a
second normal form, in which the difference and the product of two numbers
were given. This is a technical problem of considerable historical interest—
it was only a few centuries ago that negative numbers became generally
accepted so that polynomial equations did not have to be divided into several
cases depending on the signs of the coefficients—but is of no impottance to
the algebra of the problem and will not be considered further here.

* The texts cannot be closely dated. Neugebauer places them between 1600 and 1800 B.C. -
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In modern algebraic notation (also only a few centuries old) the Babylonian
solution of the problem in normal form can be written

s\? 43 3
X = 3 P 2’ J’—.S X,

or, in a more familiar form,
st /st —4p
3 .

Thus it is fair to say that they knew thequadratic formula but that they spelled
out the steps of the procedure instead of expressing it as a formula in the way
we do.

How did they derive this procedure? Unfortunately, there is no indication
in the texts which survive. The point of these texts seems to have been to
convey, by means of several worked examples, the technique of solution. It is
entirely possible that the technique was discovered by an ancient
genius and that his successors merely adopted it because it produced correct
answers. On the other hand, it may be that some derivation was well under-
stood by many people at the time, but was transmitted orally or does not
_ happen to be among the texts that have been found.

X,y =

Cubic and Quartic Equations A.p. 1500

§4 There was some progress in algebra in the 3000 years between the
Old Babylonian period and the Italian Renaissance, but it was not great. The
late Greek writer Diophantus (circa A.D. 250) introduced some abbreviated
algebraic notation, the Hindus used negative numbers on occasion, and the
Arabs constructed the solutions of cubic equations as points of intersection of
conic sections. When the Renaissance came, however, the advances in
algebra were enormous, and they opened the way to great progress in all
branches of mathematics.

In mathematics, the Renaissance was not a rebirth at all, but a period of
first vigorous growth. In ancient times, Europe had been a mathematical
backwater, and even the Romans were barbariang when it came to mathe-
matics. During the Middle Ages, Europe had learned about algebra (al-jabr)
from the Arabs and had begun to improve it by devising new symbols and
notations. Then, in the sixteenth centuryj-an enormous advance was made—
the algebraic solution of cubic equations was discovered, and soon thereafter
the solution of quartic equations.

The history of the discovery of these solutions and their exact description
in terms of the still quite clumsy notation of the period will not be necessary
in what follows. Instead, we will give just a brief account, in modern notation,
of the solutions themselves. (For more details see Kline [K2], pp. 263-270
and 282-284))

§5 Suppose the cubic equation to be solved has the form x3 + px +
q = 0. (An arbitrary cubic equation can be put in this form by dividing by the



§7. Impossibility of Quintic

coefficient of x* and then taking a change of variable x' = x — ¢ with ¢ equal
to the coefficient of x? divided by 3.) Introduce two new variables a and b and
set x = a — b. The desired equation is then a® — 3a%h + 3ab® — b* +
pa—pb+q=0,thatis, a®>~b> +(@~b)(~3ab+p +g=0 Iitis
stipulated that 3ab = p, then this equation takés the forma® — 5> + g = 0.
If a solution (a, b) of these two equations 3ab = pand @®* — b> + g =01in
two unknowns* can be found, then, as is easily checked, the quantity x =
a — b is a solution of the original equation x> + px + g = 0. Multiplication
by 3%a® makes it possible to eliminate bfrom a®> — b* + g = Oto find 27a° —
(3ab)® + 27a3q = 0, that is, 27a® + 27qa® — p* = 0. This is a quadratic
equation for 3. Let a be the cube root of a solution of this quadratic equation
and let b = p/3a. Then 3ab = p and a® — b® + q = 0, which 1mphes that
x = a — b i5 a solution of the given equation.

§6 For the solution of the quartic, assume that the equation has the
form x* + px* + gx + r = 0. (Again, an arbitrary quartic equation can
easily be put in this form.) Let this be put in the form x* = ~px? — gx ~ r.
Then, if a is a new variable, (x? + a)? = x* + 2ax? + a* = (~p + 2a)x* —
gx + (—r + a?). In order 1o take a square root on the right side, this quad- .
ratic function of x should have a single root—i.e. should be of the form
A(x + B)*—and by the caadratic formula this occurs if and only if g* —
4 ~p + 2a)(—r + a*) = 0. This is a cubic equation for a, which can (by the
above method) be solved for a. When a is a root of this equation, the right side
of the above expression of (x* + a)? has the form A(x + B)? where 4 is the
coefficient of x>~ 3 is the coefficient of x divided by 24, that s,

_ —q—_— 2 I3
(x* + a)_2 =(~p+ 20)(x ey 20)) ,

or, more simply,

2 - + _— _ ___q______ s
x*+a=+/ p+2a<x 2(—-p+2a))
which gives x as the solution of a qus ~ equation.

§7 Of course the successful solution of the cubic and quartic equations
led to attempts to solve the quintic equati~n. It was not until almost 300 years
later, in the 1820’s, that it was shown. first by Abel, then by Galois, that it is
impossible to solve the quintic equation in the same manner that the cubic
and the quartic were solved, specifically, by using no operations other than
addition, subtraction, multiplication, division, and the extraction of roots.

During these 300 years the fruitful developments in algebra were in other

* There is no sharp distinction made here among the terms “variable”, “unknown™, and
*indeterminate . For the most part, * variable™ is used in this book. If a variable occurs in an
equation that is to be solved, it may be called an unknown. If it is to remain variable and is
being used primarily as a placcholder in a computation, it may be calied an indeterminate.
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directions. One of the most important was a theorem discovered by Isaac
Newton, which is the subject of the next section.

Newton and Symmetric Functions

§8 Isaac Newton (1643-1727) is most famous for his discovery of the
universal law of gravitation and for his use of that law to give an exact
mathematical description of planetary motion. Consequently, he is identified
in most people’s minds with mathematical physics and applied mathematics.
Even people who have some acquaintance with the history of mathematics
and who realize that Newton, with Leibniz, is regarded as the father of differ-
ential and integral calculus, tend to think of Newton’s mathematics as being
closely related to his physics, and his calculus as being primarily a tool in his
study of motion. Nevertheless, Newton’s contributions to pure mathematics
alone are sufficient o place him among the greatest geniuses in the history
of mathematics. This section is devoted to a theorem of pure algebra which is
of crucial importance to the later development of the subject and which
appears to be Newton’s creation.

A portion of this theorem was published in Newton’s Arithmetica Univer-
salis in 1707, after Newton was world famous and had ceased active scientific
work. It is cited by Gauss [G2, Art. 338] and Weber [W3, vol. I, Sec. 46],
among others, and is generally known as Newton's theorem. Of course the
Arithmetica Universalis was known to have been written long before 1707,
but it is only with the recent work of Derek T. Whiteside in analyzing, an-
notating, and publishing Newton’s notebooks and papers that it has been
possible to date many of Newton’s discoveries and, in the case of the theorem
under discussion, to know that he was aware at a very early date of the full
theorem, not just the portion given in the Arithmetica Universalis.

§9 Whiteside found in papers dating to 1665-1666, in th- vc~ ~arliest
phase of Newton’s career, the following formulas: Let r, 5, ¢ be the three roots
of a cubic equation x* + bx? + ¢x + d = 0,and let an expression like “every
r's’” denote the sum of all distinct expressions of the form r's’ where r and s
are roots of the given cubic, i.e. “every ris” = r’s + st + t'r + r’t +
t3s + s?r, “every r2” =12 + 5% + 12, “every ris*?” = r’s%?, etc. Then
Newton’s formulas* are

(every 1:) = ~b ¢}
(every r¥) = b* — 2¢ : @
(every r*) = —b* + 3bc — 3d 3
{everyrs) = ¢ @)

(every r’s) = —bc + 3d 5)

* [N3, p. 517]. Newton took —r, —s, —1 to be the roots of the equation, which simply changes
the signs of the formulas with odd degree.
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(every r3s) = b%c — 2¢? — bd (6)
(every r’s?) = ¢ — 2bd 0
(every r’s?) = —bc? + 2b%d + cd ®)
(every r3s?) = ¢ — 3bcd + 3d? 9)

(everyrst)= —~d (10)
(every r’st) = bd (1)
(every r’st) = ~b*d + 2cd (12)
(every r’s*t) = —cd (13)
(every r3s%t) = bed — 3d* (14)
(every r’st) = —c?d + 2bd* D))

(every r¥st?) = 42 (16)
(every r’s?t?) = —bd? an
(every r’s3t?) = cd? (18)
(every r’s*t3) = ~d (19)

He did not record in his notes the method by which he derived these
formulas, and we can only guess what lay behind them. However, it seems
likely that the choice to stop with third powers of the roots was arbitrary*
and that he could have given analogous formulas for higher powers. More-
over, the decision to deal with the three roots of a cubic, rather than the four

roots of a quartic or the five roots of a quintic, was also probably arbitrary.
In fact, a few pages later in Whiteside's book, a passage from Newton's
notebook is reproduced in which he gives the analogs of formnlas (1)-(3)
for an equation of degree 8, namely, the formulas+t

(everyr) = —p,

(every r¥) = p? — 2,

(every r®) = —p* + 3pg - 3r,

(every r*) = p* —~ 4p’q + 4pr ~ 4s + 247,

(every r®) = —p*® + 5p>q — Sp*r + 5ps — 5t — S5pq® + Sqr,

(every r®) = p® — 6p*q + 6p°r — 6p*s + 6pt — 6v + 9p*q?

— 12pgr + 6gs — 243,

(every r') = —p” + Tp°q — Tp*r + Tp%s — Tpt + Tpv — Ty,

(every r®) = p® — 8p°q + 8p*r — 8p*s + 8p% — 8p%v + 8py — 8z,
* Newton in fact had a specific goal in mind in the passage in question, namely, the derivation
of the explicit formula for the resultant of two cubics (see Exercise 8). For this goal he needed the
given formulas and only these.

t The first four of these formulas were published by Albert Girard in 1692. In Whiteside’s opinion,
Newton was not aware of Girard’s work.
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where r runs over the eight roots of the 8th degree equation x® + px’ +
el +rxd+sxt i x4+ px +2=0. ]

In other words, it appears likely that Newton was aware that there are
analogous formulas for all degrees, that is, that any symmetric polynomial
in the roots of an equation can be expressed in terms of the coefficients of that
equation. This theorem is the foundation stone of Galois theory, so it is
important to have a careful statement and proof of it before proceeding,
(It must be admitted, however, that neither a careful statement nor a proof of
it seems to have been published before the nineteenth century. Everyone
seemed familiar with it and used it without inhibition.)

The Fundamental Theorem on Symmetric Polynomials

§10 The first step in giving a careful statement of the theorem is to
remove the reference to roots of an nth degree equation, because these roots
may be irrational or complex and they are really extraneous to the theorem.
(Newton explicitly states in his formulas that the roots may be “false”,
i.e. negative, or “imaginary”.) The particular formulas (1), (4) and (10) in
Newton’s list, that is,

r+s +t =-b,
rS+st+tr= o (20)
rst = —d,

are especially important and were probably rather widel); known ifi Newton’s
time. (Whiteside [N3, p. 518, note 12] observes that the general case of these
formulas was published by Albert Girard in 1629 but says that “we may
assume” that Newton’s version of it, which he published in the Arithmetica
Universalis, was his “independent discovery”.) These formulas follow im-
mediately from the identity
X3+ bx?+ex+d=(x—r)fx —sKx —1),

when the right side is multiplied out and coefficients of like powers of x are
equated. The same procedure applied to

X+ b 4 by x"" b+ b, = (x — 1 XX -r,)ui(x -r,)

shows that, in analogy to (20), the sum of all* (") products of k of the r; is

k
equal to (— 1)*b,. That is,
rn+r+--+r,=-b,

rry+rrs 4o ror,=b,,

ry\rafy + 1ty + o0+ Iyl ity = —bs,

Firy-c-T, = (—=1rb,.
n!

* Here (:) denotes the binomial coefficient m



