

T—
AVAN

Borland” C" 3
Object-Oriented Programming

Ted Faison

A Division of Prentice Hall Computer Publishing
11711 North College, Carmel, Indiana 46032 USA

Preface

Obiect—oriented programming (OOP) is a hot topic today. To many, C+ + itself
is synonymous with OOP, much the way many people implicitly associate LISP
programming with artificial intelligence. The truth is, OOP is not so much a
consequence of this or that language, but rather the result of the particular methods
used. It is entirely possible to develop OOP applications with languages such as
Pascal, Ada, BASIC, and assembly language, albeit with increasing difficulty.

What this book emphasizes is the OOP aspect of C++, using a particular
implementation—Borland C++—as the vehicle. Given the recent explosion of
interest in Microsoft Windows programming, the book covers selected topics of
Windows programming, but only within the framework of OOP. The reader will
learn to ynderstand and reason in OOP terms when writing Windows applica-
tions, developing a methodotogy different from the traditional one presented in the
Microsoft Windows Software Development Kit.

This is a “hands-on” book, because there are frequent programming examples
and projects throughout. All sample programs and all code that appears with a listing
number can be loaded and compiled immediately from the companion disk to test
the various features of OOP shown. Much attention was given to such practical issues
as functionality and efficiency. The reader is assumed to have experience with the C
programing language. A minimum of two years is recommended. Advanced users
will also find interesting material toward the end of each chapter.

Acknowledgments

A book like this is useful only if the information it contains is accurate, but it is very
difficult to guarantee absolute correctness. I would like to thank all the people who
provided corrections, suggestions, and input for this book. C++ streams are a
particularly detailed field, and I am grateful to Lori Benner of Borland International
for checking selected portions of Chapter 6. I also thank Borland’s Nan Borreson,
Phil Rose, Pete Becker, and Sydney Markowitz, among the many others, for their
cooperation and help. Last, but certainly not least, I thank my editor Greg Croy for

being so helpful, friendly. and professional during the many months it took to write
this book.

Introduction

-

During the 1980s. C emerged as one of the world’s premier and universal
programming languages. It made it possible and efficient to write code that was
portable to a wide class of computers. Software could be written faster and projects
on the average grew in size. With size came complexity. leading to increased
development times. Today development time and effort for software is a major issue
in many companics. AT&T developed the C++ language as an extension of ANSI C,
inanattempt to bring many of the advantages of object-oriented programming to the
world of C without losing the many desirable features—such as simplicity and
runtime efficiency—that made C so popular.

C++ was developed to make programming easier. To make this possible, the
language had to be more complex than its predecessor. All the added features of
C+ + areaimed at reducing levels of difficulty. Obviously, the mere adoption of C++
doesn’t automatically guarantee better or simpler software. To reap the benefits of
C++. you must adopt a new programming methodology commonly referred to as
object-oriented programming, or OOP.

Why Object-Oriented Programming?

Several years ago computer science researchers noted that programmers can write
and debug pretty much the same amount of code no matter what language they use.
The amount of work is roughly the same, but the results are not. Writing 100 lines
of code in C is about as difficult as writing 100 lines of codc in assembly language,
but the C code accomplishes much more. Withi this in mind, researchers sought .o
develop higher-level languages thae multiply the power of a single programmer, thus
reducing project development time and costs.

In the 1970s, the concept of the object became popular among programming
language researchers. An object is a collection of code and data designed to emulate
a physical or abstract entity. Objects are efficient as programming items for two main
reasons: They represent a direct abstraction of commonly used items, and they hide .
most of their implementation complexity from their users. The first objects devel-
oped were those most closely associated with computers, suchas Integer, Array, and
Stack. Some languages (such as Smalltalk) were designed as orthodox languages in
which everything is defined as an object.

xxiii

Borland C+ + 3 Object-Oriented Programming

Object-oriented programming is a methodology that gives great importance to
relationships between objects rather than implementation details. Relationships are
ties between objects and are usually developed through genealogical trees in which
new object types are developed from others. Hiding the implementation of an object
results in the user being more concerned with an object’s relation to the rest of the
system rather than how an object’s behaviors are implemented. This distinction is |
important and represents a fundamental departure from earlier “imperative” lan-
guages (such as C) in which functions and function calls were the center of activity.

InC+ +, fewobjects are part of the language itself. Th~burden and responsibility
for devising objects is on the user. Borland C+ + is bundled with a number of object
types, butto make any real use of the language requires developing many more types.
The power of OOP is exploited if groups of interrelated object types are developed.

These groups are usually called class bierarchies. Developing these class hierarchies

is a central activity in OOP.

The Structure of This Book

xxiv

This book describes the new methodology required to develop class hierarchies
based on Borland C+ + 3.0, using the object types furnished by Borland Interna-
tional. Before doing so, the book covers the basic features of C+ +. The main OOP
features of C++ are introduced in separate chapters.

This book is divided into two parts. The first part, “Object-Oriented Program-
ming with Boriand C+ +," describes the C+ + language in general, with particular
attention to Borland C+ + and the features that make it an object-oriented language.
This book is not intended to be a complete reference on Borland C+ +, but it shows
how to use the language features in an object-oriented sense.

The second part of the book, “Developing Windows and DOS Applications,”
beginning with Chapter 8, shows how to use Borland C++’s class libraries and
application development tools. In the 1990s, graphical interfaces are expected to
supplant all other interfaces, with Windows being: the premier GUI on DOS
machines. Anticipating this, Borland has developed two application frameworks for
its C+ + 3.0 compiler to facilitate writing Windows or DOS programs. Much attention
is given throughout the book to the program examples, which also are available in
source code on the companion disk. Each of the examples has been tested and can
be compiled and tried immediately.

The structure of this book is somewhat unusual. Although on the surface it is
straightforward. in reality you sometimes are referred to material in later chapters.
This is because I chose to describe C+ + systematically rather than gradually. This
makes it easier to find information in the book. For example, the section on class
destructors in Chapter 2 has all the information on destructors, citing virtual
destructors, even though virtual functions are described in detail only in Chap-
ter 5. This order of presentation differs from that of most other C+ + books; however,
I believe the advantages outweigh the disadvantages.

Introduction

Book Description

This book deals with C++ programming in general and Borland C++ 3.0 in
particular. Frequently [refer to C+ + rather than Borland C+ + when a specific topic
is general to the proposed ANSI C+ + standard. Because Borland C+ + is essentially
a superset of AT&T C+ + release 2.1, the distinction is necessary.

Chapter 1, “Basics,” summarizes the main constructs of Borland C+ + without
making any formal definitions or presentations, giving space to topics in which C+ +
differs from ANSI C. Although C programs can be compiled with a C++ compiler,
it is not true that C++ always uses the same techniques as C programs. Some C
features considered obsolete in C++ are pointed out.

Chapter 2, “Objects and Classes,” is the real beginning of the object-oriented
extensions to ANSI C, introducing the new concepts of objects and classes. This
chapter shows how code and data are used together to build an object, how objects
are used, and what. properties they have.

Chapter 3, “Inheritance,” illustrates how objects can be built starting with other
objects rather than from scratch. This enables the objects to inherit characteristics
from the parent classes, reducing the amount of coding and debugging necessary to
accomplish a task. Inheritance allows classes to be used repeatedly as black boxes,
increasing programmer productivity. Both single inheritance and multiple inherit-
ance are discussed.

-Chapter 4, Overloadmg deals with function and operator overloading.
‘Experienced programmers may yawn initially here, but don’t even think of skipping
this chapter. Overloading is an important characteristic that allows different classes
to use a uniform notation for actions that are conceptually similar. This is another
C+ + simplification that comes to the aid of the programmer, helping you manage
large projects better.

Chapter 5, “Polymorphism,” covers one of the most touted features of C+ +.
Polymorphism is described and shown as a.concrete way to simplify programming
through the use of virtual functions. Advantages and disadvantages of virtual
functions are shown, including explanauons of the runtime features of virtual
functions.

- Chapter 6, “Streams,” deals with input and output (1/O). All programs have to
produce results to be useful, so they must have a means for outputting information.
In general, programs need both input and output. Chapter 6 describes input and
output in terms of the new C+ + constructs of streams. 1/O streams are described for
both files and hardware devices. The concept of the stream is also applied to in-
memory operations.

Chapter 7, “The Container Class ubnry, is specific to Borland C++ 3.0 and
doesn’t apply to other compilers. The container class library furnished by Borland
is described, with examples of its utilization. This class library is basic to almost any
programming project and should be studied with the same attention as Borland
C+ + itself. The reuse of classes is one of features that makes C+ + such a productive
language. The chapter shows not only how to usc the container classes directly but

xxr

Borland C+ + 3 Object-Oriented Programming

-

also how to use them as base classes for your own customized cliasses. Both the
object-based and template-based container classes are described in detail.

Chapter 8, “Classes for Windows Programming,” introduces Microsoft Windows
from the viewpoint of a C+ + programmer. It assumes familiarity with Windows as
agraphical userinterface and as a programming environment. The chapter deals with
the design and development of classes to be used in a Windows environment. Each
class is demonstrated with concise application programs, the code of which is
available on the companion disk. The bulk of the literature available about Windows
programming describes techniques that are excellent for C programmers but not
sufficiently object-oriented. With Borland C+ +, classes are used to simplify the work
and hide many of the usual difficulties of Windows programming.

Chapter9, “A Complete Windows Program,” combines all the knowledge gained
from the preceding chapters to design and code a small Windows application
program. Many of the Windows constructs are illustrated, including message boxes,
dialogboxes, clipboard interfacing, using the printer, loading DLLs, and more. Using
objects extensively can make tasks relatively easy and perhaps even enjoyable.

Chapter 10, “ObjectWindows Library Classes,” explores the Borland Application
Frameworks, starting with the ObjectWindows Library (OWL). The chapter describes
ways to reuse the basic OWL classes to customize various parts of a typical Windows
program. The approach taken in this chapter is low level, in that the focus is on single
classes or Window objects rather than applications. Custom controls, persistent
objects, splash images, and glyphs are among the topics covered. A basic understand-
ing of OWL is required to follow the material in this chapter and Chapter 11.

Chapter 11, “OW1. Applications,” takes a higher-level approach to OWL Windows
programming than Chapter 10. New classes are derived from OWL classes to support
several common application requirements, such as status lines, pop-up menus, tool
palettes, and edit windows. From a Windows programming perspective, Chapters 10
and 11 probably contain the most interesting material of the book.

Chapter 12, “Turbo Vision Classes,” tackles another Borland application frame-
work, Turbo Vision (TV). Many low-level classes are derived from built-in TV classes
to customize the basic parts of a TV application, such as status lines, menu bars and
desktops. Persistent TV objects are covered in detail at the end of the chapter. A basic
understanding of TV is required to follow the material in this chapter and Chap-
ter 13.

Chapter 13, “Turbo Vision Applications,” uses the classes and examples devel-
oped in Chapter 12 to build several different TV applications. The applications
emphasize some of the important features of TV, including context-sensitive help,
property inspection, and edit windows. Using the guidelines shown in this chapter,
you can develop sophisticated applications that incorporate a mouse, customizable
colors, multiple overlapping windows, hot keys, and an integrated help facility. The
chapter shows how to change the basic features of TV by deriving classes to suit your
needs—without worrying about all the underlying details of event management,
graphics modes, and so on.

Introduction

Notational Conventions

A few basic conventions have been adopted throughout the book to increase
readability:

1.

Requirements

When Borland C++ keywords are used in a sentence, they are printed in a
special monospace type. This increases the clarity of the text, as in the follow-
ing example:

“When returning a void from a function...”
File names are printed in italics, as in the following example:
“The definitions in stdio.b are used...”

Function names are printed in monospace and end with parentheses. When a
file accepts parameters, three dots are used inside the parentheses to denote
generic parameters:

“The arguments of printf(...) are unknown at compile time...”
Variable names are printed in monospace:

“Assigning a value to variable arg is allowable if...”

You don’t need a computer to study programming, but it sure helps! To master the

material in this book, you not only need to study the source code of the various

examples, but you should try making changes and compiling on your own. You need
* the following items:

An IBM PC AT or compatible computer

MS-DOS or PC-DOS 3.1 or later

A Microsoft-compatible mouse

EGA or VGA graphics

Borland C+ + version 3.0

Borland Application Frameworks (for Chapters 10 through 13)
Windows 3.0 or better (for Chapters 8 through 11)

The Microsoft Software Development Kit (SDK) for Windows is not required. If

you have Turbo C+ + or Borland C+ + 2.0, you can still compile most of the code
in chapters 1 through 6, but you won't be able to try the container examples in
Chapter 7, the Windows code in Chapters 8 and 9, or the application frameworks in
Chapters 10 through 13.

xXxvit

Contents

PART | Object-Oriented Programming with Borland C++

[
BaSICS uoooao.‘-.-n--o-c-oc-ovnnca.-ou.o:ovuouoo-noo-ou.--.o.-.;oouo-otv-o'-'--'oocuutt-ovoo3

The Structure of Borland C++ Projectsccccceviveieinviinnennininianiions 4
 Header Files ..o OO U RO PPURUTUPSRP 4
The Multiple Inclusion Problemccoociiiiii, 4
Precompiled Header Filesccccovviiininnnennnn. e .5

A Complete Sample Programcceoecvennnes ree e e e e e et et e e et e 5
COMMENTSoovviiierieieeeiien e eeteesineens et e trre et earreeraas 7
include Files ..o 8

The main() Functioncoooooviiiiiiiiiiierr e 9
Variablesoooiiiii 10
SCOPES .ot 10
BIOCK SCOPE ..ottt st e e 11
Function Prototype SCOPE..........cccoevvivevrirreeiriiiiiciiicc e 12

File SCOPE ..ottt e 12
TYPES o e 13
STOTABE ClASSESoveiriiiiiiiiiieit ettt treebre e eree e 13
The const Modifier OSSP 14
Using const Rather Than #defineccoooceevvrciivicieiiinnniiennne, 15
Initializing a const with a Function Callc.ccooccviiiiiiii 16
The volatile MOQIfIer ...t 16
SEALCIMENTS L..ooiiiiiit ittt s bae e bt e st eaa e s bn e e s sasaeeesneaeaas 17
EXPression StatemeEntsooociiviiiiiriiiree e esaesaeseenee e 18
The {f Statementcoovvenieecieinnen. SORURRUPRRO e 19
The SWHCH STAEMENTooooiiieiireeieeriaeeeiieaeeesree e eeseeeee e 21
Labeled EXpressionscooceeeveviiiiiniinienecneen e e 22
The while SLAEMENEcociviviiieriieiiee e cce e eres s 23
The do while STACMENToccoviiiiiieieie e 24
The for Statement ...t 24
The break StAEMENEc.o..oooviiiiiiiiie et 25

vif

Borland C+ + 3 Object-Oriented Programming

viii

The gOro StAteMENTcooooiiiiiiiiiii e 27
The return STAEMENT ... 27
Passing Parameters to Functionscc.cocciviiiiinn ereererraneenn 29
Passing const Parameters t0 2 FUNCHONc.ocoooveiiivrieiieneen, 30
Using Default Arguments ... 31
Returning a Value from a Function e ettt .31
Returning const Ttemsc..ocoooiiiiiii e 32
Problems When Returning Values ... 33
Using Function Modifierscccccoiiiiiininiececeeieee e, 34
The cdecl MOGIIETooviveeeneieeiiee e et 35

The pascal MOdifiercocooiiiiiviiiii e, 35

The interrupt Modifier................. et a et e e e e .36
Pointers and Referencesc.c.cooovviveeeeinnnns e e 36
" Using Pointers and References with const e e 39
Advanced Section ... oo 40
Using Inline Assembly Language ettt e e e e 40
Name Mangling ... 42
Using C and C++ Together............ooiivieieiiiciieer e 43
Returning Large Structures by Value ... 44
Using EnUmerations ... 47
Using Memory Management ...t eveee e e 48
Handling Memory Allocation Failurescc.occoovcnieiieniiciencennnn, 51
Understanding the C Calling Sequencec.ooeevvvviieerinicncceee. 52
Understanding the Pascal Calling Sequenceoooovoviiiiiiniiiinicnen. 53
Using Interrupt Handling Functionsccoccoeveeeiieiieniicecen 54
Using Functions with Variable Argument Listsccocoooiirenennnnne. 55

Defining a Class........ ettt ettt 58
Class Identifiers ... 58
The Class BOy ...t 59

USING 2 CLASSoooiiiiiiiiiiii e ecae e e s 60
Encapsulation ST TSRO TROTON 61
Control of Access toO A CIassooooiveeiivieiieeen. ettt re e e e e e 62
private Class Members ... 63
public Class MCMDETS ... 64
protected Class MCIMDELSc.ooovoiiiieiieeeeieeeeeeeeeeeeeeee e, 65
Storage Classes for Class Objects ... et 67
CIass SCOPE ...ooiiiiiiiii e et 67
Empty CRasses ... e 67
Nested ClaSSEsooiiiiiiiiiii et et 68

Access Rules for Nested CRISSES oo, 68

Contents

A Short EXample ... 69
Class INSLANTALIONooiiiiiiiieiiiiiee e e eereeree e aee e ae s e s ese e s nesneanes 71
Incomplete Class Declarations ... 71

Using Data MemMDCTS ... 72
static Data Members ... eeeeeeeeeeeeeeeeeaeesasteeeeasaeeesaneeeeeaneeaaneteanaen 72
private static Data MEMDELS ... 76
Class Objects as Data Members ...

Pointers as Data MCMDBErScooiiiiiiie e 78
Pointers to Class Data Members ...
Pointers to Object Data Members ..o 81

Using Member FUNCons ... 81
Simple Member FUNCHONS ..ot 83
static Member FUNCHONS ...t 83
const Member FUNCHONScooooiiiiiiiiiiii e 85
volatile Member FUNCHONS ..., e 85
inline Member Functionsc.c i, ettt e et eee e 86
Member Functions with const thisccccccovveeveeeiveeeiiiiiiiiiiiin,
Member Functions with volatile this..........

Special Class Functions ... e 90
CONSIIUCEOESeoiviviiiiiirerreceeeteteeiteraeeeassssaeesse st nbbanbsnrsbesesersaaraeeaeaaeesens 91

Constructors for Classes with Subobjects ..ol 92

Private CONSUTUCTONS ...t 92

Default CONSEIUCLOTSooiiiiiiiii e ce e cerrra e cnr e 93

Constructors with ArgUmMCNES ... e 94

Constructors for Copying ObJectsoooooviviiiiiiiieececce 96
DIESEIUCEOLS ...t e e e e e 99

PUbLic DESTIUCTONS ..ot 99

Private DESIIUCLOTS ...ttt 100

‘The friend Keyword
Properties of friends

Advanced SCCHON «.............cocovooerne e,
Pointers to Member Functions ..., 104
Arrays and Classes ... R 107

Arrays OF Class ObJects ... 107
Arrays of Pointers to Class Objects oo 108
Arrays of Object Data Members o 109
Arrays of Pointers to Class Data Members ..., 110
Arrays of Pointers to Class Member Functions ..., 111
Arrays of Pointers to static Data Members ... 112
The Anatomy of a Member Function Call e 113
Class Templates ... L 116
Nested Template Classes ..o e, 119
Class Templates with Multiple Generic Arguments ... 121
Class Templates as friendsc.ccocoviieeeeeeeieeeeeeeeeee, (24
Function Templates ... e, 124
ix

H

'

Borland C+ + 3 Object-Oriented Programming

3 INNEILANCE ...ooovvvnreereeeieeeerescssirieeessessssssssssssessssesssrassnressssass 129

Reusability ... 130
Inheritance
Power Through Inheritance .o 131
Limitations of C++ Inhenmance ..o SUSUR 131
A Different Perspective on Inheritance e 132
Single INhCritance ... 133
When to INherit ..o 133
What Can’t Be Inherited .o 133
Access Specifiers for Base CRSses .o e 134
Classes Designed to Be Inherited . 135
Arguments Passed to a Base CIass ..o 137
Order of Invocation of Constructorsc....coovee.
Order of Invocation of Destructons ..., SUTPRTURR 139
Sced Classes ... OTUUTRRP et 139
Type Conversions with Derived Classes .. 142
SCOPE RESOIULION ..o e 1-i<4
Feature EXpansion ... 147
Feature Restriction ... 150
An Example Using Single Inheritance oo 152
Functional ClOSURes ... 154
Implementing a Functional Closure ... 155
Developing Closures Through Inheritance . 155
Developing Closures Through Instantiation ... 158
Multiple Inheritance ..., 160
Declaring a Class with Multiple Base Classes ..., 162
Invoking the Base Cliass CONSIIUCIORS ... 162
Using virtual Base CRISSES ..., 163
Using virtual and Non-virtual Bases Together ... 165
Invoking the Destructons ...t e 165
Using Type CONVETSIONSoooooiiiiiiiiiiiieice e 166
Keeping Base Class Functions Seraight ..., 167
Using Scope Resolution with Multiple Inheritance ... 169
Keeping Track Of MEMOIY ..o 171
AAVANCEd SECHOMN L...ooiiiiiiirii e 172
Runtime Considerationsc.ccooviiiioriiiiiiie e, 172
INSide an OBJCCT....ovviiiiii e 173
An Inherited Debugger ... 176

Contenls

4 OVverloadingcccereveenirvenrnenncsnesecsiissenessesssssesesesennes 181

Why You Should Overload

Function Overloading ...
Nonmember Overloaded Functions ..o 183
Overloaded Member FUNCtions ... 184
Overloaded Functions in a Class Hicrarchy ... 185
Overloading Is Not Overriding ... 187
Scope ResOIution ... 187
Argument Matching ... 188
Overloaded ConsStructons ... 189
Some Special Cases ... 191
User Conversions Through Overloading ... 193

Using Overloaded Constructors ... 193
Using Special Conversion Functions ... 196
Overloading static meniber Functions ..., 190
SOperator Overloading ... 197
Operators as Function Calls ... 199
Overloaded Operators as member Functions200
Notes on Operator member Functions ...l
Overloaded Operators as friend Functions PO UURUUR
The Assignment OPerator ...
The Function Call operator() ... : .
The Subseripting Operator ...

Operator Overloading Limitations
Scope Resolution with Operators

AAVANCEd SCCHOM ...t 21+t
Rules for Name Mangling ..., 214
Overloading new and delete......................ccccooviiiiivinniiieinn, e 217

prefix and Postfix OPerators ...t e 221

5 PolymorphiSmc.covveveivirenvecnnienincnenennnennenenesenensoenss 223

Early and Late Binding ... e 224
C++ Isa Hybrid Language ..o 225
VErtUal FUNCHIONS ..o 225
Function Overriding ..o 227
Null értaect] FUNCHONS ... 228
Improved User Interfaces for Classes ..o, 230
AbSEract CLASSES ... e 230
Limitations of virtual unctionsoooviiiiii 234

AY)

Borland C+ + 3 Object-Oriented Programming

Re/]

virtual friendsc..ccooeiiiiiiiiiiiiiii e 234
VIrtUal OPCTRLOTS ...ooiiiiiiiii e 236
virtual CONSIIUCTOLSoooiiiiiiiiii e 239
VIrtUal DESTTUCTONSooiiiiiiiiiiitecee et 239
An Example of Polymorphism ... 239
Scope Resolution Disables Polymorphism ... 244
virtual Functions with Non-virtual Functionsc...ccccovie 244
Memory Layout of uptr and vtab Structurescccoovvvienieienneenn. 245
virtual Functions Don’t Have to be Overridden ... 246
TOBe Or NOttOBe virtualooevvveveiiiiiiiiiiinieiiiceie e 249
virtual Functions Can Also Be private...............cccccocooveveviiviivenivniiainn. 251
Advanced Section ... 252
The Mechanics of Polymorphismoooeiiii 252
Polymorphism with Single Inheritance ..., 253
Polymorphism with Multiple Inheritance ... 258
inline virtual FUNCHONS ..ot 202
Invoking Polymorphic Functions in a Base Classcccccoooe .. 2606
virtual Functions and Classification Hierarchies 208
Invoking virtual Functions in 2 CONStruCtorooooeeeniiviiiieeen... 271

The Drawbacks of the stdio Approach ... 273
The CH+ SEream e 275
Streams as Generalized Filters ... 275
Standard Stream 1/0 with Built-In Data Types JSTRSRURUR 277
1/O with char and char® Types.......c.. oo 279
1/O with int and Jong Types ..o 280
1/O with float and double 1ypesc.cooooveeeveiiiiieiiiciicieeee 281
HO with User CLASSES ..ot 282
Manipulators ..., 285
Using Number-Base Manipulators ..o 287
Setting and Clearing the Formatting Flags ... 289
Changing Field Widths and Padding (OISO 289
Using the Formatting Manipulators ... 290
File 1O with Streams ... 292
Using Text Files for Input ..., 293
Testing a Stream for EXrOrs ..ol e 294
Using Text Files for Output ... 296
Using Binary Files for Input ... 298
Using Binary Files for Qutput........ e, 300
In-Memory FOrmatting ... 301
Using the Printer as a SUream e 304

Contents
Advanced SECONcooiiiis i 305
Built-In Stream TYPES ...oovovoieiiiii e :
The streambuyf Hierarchy
Class Stre@mbufcccccoevviieciiioniiiiieeieeieeiereeee. 307
Using put and get POINEErsccooooviio i 315
Deriving a Class from streambufccccoooviiiviiiiiciii R
Making a Ring Buffer ... :
Class strstreambufc...c..ccooeomiiiiiiiiiiiiei e
Deriving a Class from strstreambuf.
Class filebufccccoccovivviiiinieniiiiiiiiraven.
Deriving a Class from filebuf
The dos Hicrarchy ...
Class i0S.......ccccovviiviiiivi i,
tising Class #0sc.cccccceveeenni..
CRaSS ISIreamocoooeeiiiiiiiieieiee e e :
Using Class ISEreamic.....coooiiviciiiinieeeeeeeeesees e R
ClaASS OSEFean ..ot TSR 358
Using Class ostrean:cccccoovvvvnnicniinnn.... e 302
ClASS FOSEP@ANL ...t e, 303
Deriving a Circular FIFO from {ostream 36+
Class istream _with@ssignccccocoeviiviiiie e 367
Class ostream _withassigncc....ooccoivoivieeeeioiiiis e, 309
Class iostream_withassign - 371
Class fstreambasecccccvvvvviiircrenin . 372
Using Class fstreambase 374
Deriving a Class from fstreambase.................ccovvvveevcvcnvinn. 375
CIass SIFStreambase...................cc.c.cooecevveiveiiveeseerireieseeeoeseseeeseenn 376
Deriving a Class from strstreambase.................o.ccocoocoovvevanin... 377
Class ifSIre@mccocooceeiiiiiviiiieicsiseeieieee e e 378
Using CLass ifStreantocoovovevvievinveniiiiivienovea e, 380
CIaSS OfSEre@mcc.ccooovivviiiiiiieeeeeeeeeesreeeeeeeeeeee e 382
Using Class OfSIreamcoocovevecviiiiiiiieiiieieceeea, 384
CLasS fSUFCAMLccooviiiviiiiiiieieeceeeeeeeeeeeeeeeeeeeeee e 385
Using Class fStredmccc.oooeeiveveeeeiaeeeesrii) 387
Class SEPSIrCAmME ..o 389

tsing Class istrstream

Class OSIFSIPeAMooiioveieeeeeeeeeeeeeeeee 392
Using Class OSIrstreamtc.oococeveecveciiieesieeeoeseo e 393
CIASS SIFSEP@AN ... 397
Using CLass SIFSEFedm ..o 399
Text and Binary File Operations with Streams ... 401
A Binary Stream Example ..o 401
A Text Stream Example oo 40+
N\

xiii

Borland C+ + 3 Object-Oriented Programming

User-Defined Manipulators A e 407
Using User-Defined Manipulators with Parameters 410
Using Manipulators with User Stream Classesc......... 413

Stream Code SiZe ... 416

The Container Class Librarycccccoovvvnnnrnniesnnenerennnn 419

Advantages of Class Hierarchiescccooioiioiiiiineeoeee e 419
Goals of Class Hierarchiesoooovemiei oo e 421
The Container ClaSSeSoo.ooviiii it eeeae 422
Class Categories e et b et —eteaes 422
Class Identification at RUNTMEcccooiiiririineceeeeeeeeeeeeeeeesnn 424
The Object-Based Container Classes..................c.c.ocoooviiiveiiiicieninnn 425
Class ABSIFACIAIIAYccovceiiiieiinitceceeeeeeeete e 425
CLASS AFFAY ..ot e 431
Using CIasS Arra) «...coooviiiiiiiiiieiieee et 433
Reusing Slots ...l e e 434
Class ASSOCIALIONc...coc.covviimiisiicciiiicievie v et ———— 435
Defining Objects to Be Used with ASSOCIQUtionscooo....... 438
Using Class ASSOCIQHIONc..cccooveoivoiiiaaiisivisvreciiaeeciaareeaaaien 439
Deriving a Class from ASSOCIALIONccccevvreeciveieveiiveininivearrnan.. 441
CIASS BAZcvioviiiee et e, 443
ClasS BASCIDALEocovomecieiirie s ovie e eeee e eeeeessiesseesveern 448
Class BaseTime U TURRRRURRI 451
CLASS BITO ...t ee e e eee e et e e v e eeeies e 455
ATECE PrIMIET c..ooviiiiiiiiiiiecii ettt e e e e 455
Binary TICCSooooiiiiii e e 456
1em AdditioNS ..o 456

Item Searches oo e 456

Item Deletions Nttt e e et e s e s e e et bt baneneeeeas 456
PerfOrMANCE ...oooooiviiiiiiiiiiiii e eee e e e e 457
B-TTOES oo e 457
The Structure of B-TreeS ..o, 458
NOde OverflOWS ..o .459

The Borland B-Tree RULCSoooviiioeiieooeereeeee e 402
B-Trees Are NOt Binary Treeso.oooveviviiiveeece e, e 403

The Declaration of Class BEreecccvoveuveeieeeeieeeoeei 463

A Complete Btree EXamplecooooooviiiiiioiiioie e, 408
CLaSS COUCCHIONc.cocovvcviceiors eeeeeeseeeeeeeeeees oo, e, 473
ClasS COMIAINOEc...cuooooiiisiieieeeees e e, 475
ClaSS DIAIOo e 182
CLASS DOGUE ... 489

Contents

CIaSS DICLIONATY ..ottt eien it 493
A Dictionary EXample ... 494
External lteration with Dictionary CONtaiNers ... 496

" Class DOUBIELISEccovvviviiiiiiiniiriins e r et naaes 497

CIASS ETTOF <o oeeveeeee oo e eteeanss et st e e s s e s as it e e oot ab s 504

Class HashTable et eerteeetarbeieae e teanteenras e e e e e e 507

CLASS LESE . vveerereeeeeeeestnesseeessessasaeesanesorneseibne s eenra s e iab e e st e st te st s st 516

CIASS OBJOCE ...ttt 521

C1ass PrOTIYQUEUEovvviviiiriciitisisievisisissss b 524
Using Class PriorityQueue SOOI PO PSPPSR IORTRPRPO 527
Converting a PriorityQueue into a GIFO ... 531

ClaSs QUELEoveviiei vttt e 532

CLASS SEE ..o veeeveeerereaseeriesesssseaaeesearsaanesaetmresas e as et s e e s e b e e n et 536
A Set Class to Handle Stringss € 537
A More Mathematical Sef Classccoooiiieiiin e 539

CIASS SOFLABIE ...ttt bbb e 542

Class SOTLEAATTAYcocoovovvveinioiiiniiininiiiiens cart s 544

ClasS SEACRoovvvevceeiiieviiiiniiiiiiieiiens e 546

CLaSS SEFING ..o e 550
USING CIASS SEFENGcoovivieiiniiiiiacisin e e 553
Deriving a Class from SIring ..o 555

CIASS TIMC .o ceeeeeeeesteeeebe et ettt e ivr e e s e s SRR 558
USING ClasS Tocoviuiiiiieiiiiiiieesi s 559
Deriving a Class from Time.................... T SO UPPPPN 560

CIASS THICE ..o eeeesee e e s et st st s s s ontsn s obssmae s et b sre s ees 565

Class TShouldDelete....................cccovcoveeiniciiniininiiiniiiniese s 569

(T 110 o R T U PP OO PRI POPIPOTPPPPPPP PSSP 570

Building the Class Librarycoooiiinini 572

The Template-Based Container Classesc..c.c...... et 573

FDS and ADT CONTANETSovviireieiniiiieniniiiniiie s siesitse e 573

FIDS CONAINETS «...oeiveieeiiiiieteeeeesreeneetesiiaiereasesisntesassonaneneesesssiitssnessssnns 574
FDS Storage Paradigmscooooiieiiiiiiinnin e 574
FDS CONEAMEIScovveeiiovreeeieiieeereeesieeessise e csrasesnreassanrs s ssraassireseines 575
FDS Vector CONTANETSoocviveeivieeeiieeerirreesineesiianse e s aniesseireeessiess 575
Simple DIire€t VECIOLSoooiiiviiiiiiiniieniei s 577
Counted DIreCt VECIOTSc..ooiiiiiriimeniesiesiineninesiiie st 578
SOrted DIreCt VECEOLSo.oovviveeiiieeiierinieeeeeitiesiiine st sens s 579
Simple INAINECt VECTOLSooviuriviirieiiieninieeeenissiiiee s 582
Counted INdireCt VECTOLSccoveverreeerirnecnnes et 583
Sorted INAIreCt VECLOLSc..oevovvierecirerteeiineeeinreneiisssensnnsesie e 585

FDS LiSt CONEAUNETSuvvviviiinirieeieeieeneeeniieesessmmananiriaissrnisiestereennssseesensssas 587
Simple Direct LiStscoooeveernninnn TP O U PP RO PP SO R RPN 589
Sorted Direct Lists........... ettt eb e et aes ettt teien 590
INAEECT LESES «...oveeveiierieotieeeeeeereasseeeereesreeeaeessressan e saaeetsssabe s besnaneenne 593
Sorted INAILECE LISEScooiiiiiiiiiiiiiiiieat i rastsnrrtii s aeaasaeennnibiin s 594

