FORYRANTYY

LANGUAGE AND STYLE
A Structured Guide fo Fortran - 77




/22

ur

E

I
Bl
A

DRT

LANGUAGE AND §
A Structured Guide fo Fortran 77

L

A

MICHAEL J. MERCHANT

Wadsworth Publishing Cdmp_ony
+ Belmont, Callifornia

. {2 ¢7 A Division of Wadsworth, Inc.

5506347




Computer Science Editor: Jon Thompson
Editorial production services: Cobb/Dunlop Publisher
Services, Inc.

£cg 00

©1981 by Wadsworth, Inc. All rights reserved. No
part of this book may be reproduced, stored in a
retrieval system, or transcribed, in any form or by
any meansy electronic, mechanical, photocopying,
recording, or otherwise, without the prior written per-
mission of the publisher, Wadsworth Publishing
Company, Belmont, California 84002, a division of
Wadsworth, Inc.

Printed in the United States of America

12345678910 85 84 83 82 81

Library of Congress Catalogi'ﬁsjfn .aug%cation Data
b

Merchant, Michael J.
FORTRAN 77: language and styl€’

Includes index.

1. FORTRAN (Computer program language) 2. Structured
programming. . Title. ,
QA76.73.F25M463 001.64'24 80-39551
ISBN 0-534-00920-4




-

b K4

-y

i

!

IR

l
ABOUT THE ART

The publisher acknowledges with great appreciation the generosity of the persons and
institutions named below for providing the computer-generated images that appear at
the beginning of each chapter and on the cover of this book. In addition to their visual
appeal, these images illustrate an important application of FORTRAN, the original
high-level, scientific language.

The images that precede Chapters 1 and 7 are the result of computer graphics
research into the problem of depicting three-dimensional objects. The ‘‘ball of yarn”
image was produced in part by ‘“‘random walk™ commands. Reprinted by permission of
Ken Knowlton, Bell Laboratories.

Chapters 2, 8, and 9, as well as the text’s cover, are illustrated by simulation
experiments involving stress, contour, and other factors. These studies were conducted
at the University of Utah, and the graphics are reprinted by permission of Hank
Christiansen, Brigham Young University. _

Three images were produced with the aid of a massive graphics program running on
one of the largest computer installations in the world. The dual magnets (Chapter 3)
and the nose cone impact simulation (Chapter 10) are reprinted by permission of Bruce
Brown, and the portion of the DNA molecule (Chapter 4) is reprinted by permission of
Nelson Max, Lawrence Livermore National Laboratory.

The illustration of pawns on a chessboard (Chapter 6) is one example of many
synthetically generated images of complex scenes produced at the University of Utah
under a research contract with DARPA, and it is reprinted by permission of Martin
Newell, Xerox Palo Alto Research Center.

“L Space,” the work opening Chapter 5, is an artistic exercise in balancing random
sarameters and control parameters created at Syracuse University. It is reprinted by
ermission of Judson Rosebush, Digital Effects Incorporated.

-




o)

U
A
{11

-ACE

This book was written with two questions in mind: What is the best way to teach the
new FORTRAN language, and what is the best way to teach structured programmmg
using FORTRAN?

In answermg the first question, choices about the selection of topics and the order
of presentation often were dictated by features of the 1968 FORTRAN language
standard. Character data, for example, has been placed on an equal footing with
numerical data and has been covered early in the text. The addition of a CHAR-
ACTER data type not only extends the capability of the language, but also makes it
easier to teach, since it opens a broad range of applications to the student which
illustrate important programming concepts without requiring advanced mathematics.
The addition of list-directed input and output allows students to write programs
without having to master the rather complicated technical details of FORMAT state-
ments.

Teaching structured programming with FORTRAN was difficult before the new
standard because the language lacked the necessary control statements. The addition of
the IF-THEN-ELSE structure has made it possible to teach students to write clearly
structured programs.

Throughout the book, programming language concepts are integrated with con-
cepts of programming style. Style modules in each chapter give practical advice on
how to write a program and how to apply the FORTRAN language. Top-down design
and structured programming are continually emphasized.

In the firm belief that programming is a subject best learned by practice, Chapters
1 and 2 are organized to get the student running programs right from the start. In
Chapter 1, students see a complete program developed from top-down design to
finished code. Chapter 2 guides students through the details of running the program on
a computer.

" The entire text can be covered in a one-semester introduction to progfamming
with FORTRAN. Students who are already familiar with another programming lan-
guage could omit Chapters 1 and 2, or cover them rapidly. By omitting the sections
labeled as optional, Chapters 1 through 7 can serve as a short course in FORTRAN or
as a supplement to a course in introductory data processing.

HARRRL

—



viii | PREFACE

Although the responsibility for any deficiencies in this text is my own, 1 would
like to express my sincere thanks to the many people who read the manuscript and
made valuable suggestions for its improvement: John H. Crenshaw, Western Kentucky
University; Henry A. Etlinger, Rochester Institute of Technology; Krzysztof
Frankowski, University of Minnesota; Robert Frye, Central Michigan University;
Kenneth Geller, Drexel University; Mark Luker, University of Minnesota—Duluth;
Franz. Oppacher, Concordia University; and Frank G. Walters, University of
Missouri—Rolla. "

Michael Merchant



AR




vVii
35
36
36
40
41
43
45

s
<
C
0
O
on
o
Q
zZ
<
%]
p
I
== =
c
o)
@
-—
<C
%)
sy
w
T
]
o
>
o)
o

CONTENTS

yle Module—Typing FORTRAN Statements
yle Module—Using Comments

eparing Your Data
Setting Up Your Job Deck

Running Your Program

rddhctjon
Preparing Your Program for the Computer

In
P
S
S
P

=g el A A =4

The FORTRAN Language
What Computers Do

Structured Flowcharts
Summary

Introduction
Algorithms
Top-Down Design
Vocabulary
Exercises

DESIGN

Preface
2 RUNNING YOUR FIRST PROGRAM

IX

46
48
50
53
54
55
55

Running on an Interactive System
Errors and Diagnostics
Operating Systems

Summary

Vocabulary
Exercises



CONTENTS

'3 CONSTANTS, VARIABLES, AND EXPRESSIONS - 59

Introduction : 59
Constants < 59
Exponential Form 61
Why Integers and Real Numbers Are Different 62
Variables 63
Executable and Nonexecutable Statements 64
Implicit Type Declaration 65
Default Type Declaration 66
Style Module—Choosing Variable Names 67
Style Module—Using Type Statements 67
The Assignment Statement 68
Expressions , 69
Real and Integer Arithmetic 74
Type Conversion with an Assignment Statement 76
Symbolic Constants ) 78
Style Module—Symbolic Programming 80
Style Module—Writing Expressions 81
Summary : 83
Vocabulary 84
Exercises 84

4 CONTROL STATEMENTS AND STRUCTURED

PROGRAMMING (o3|
Introduction o1
Control Structures 91
The GO TO Statement o a3
Style Module—Using Statement Labels 94
STOP, PAUSE, and END Statements 04
The End-of-File Specifier in the READ Statement 96
The IF-THEN-ELSE Statements o8
Relational Expressions 99
Logical Expressions 100
Other Forms of the IF Statement 104 -
Style Module--Structured Programming - 107
Style Module—Loops with an Exit in the Middle 112
The ELSE IF Statement 18
The DO Statement 124
The CONTINUE Statement 128
Rules for DO Loops 128
More Rules for DO Loops 130

Style Module—Misuse of the DO Statement 132



CONTENTS

§

Style Module—Comparison of Real Expressions for
Equality ‘

Style Module—Real DO Variables

Summary

Vocabulary

Exercises.

CHARACTER DATA

" Introduction

Character Constants

Character Variables

Symbolic Character Constants
Character Expressions

Substrings ‘
Character Assignment

Another Look at Input and Output
Comparing Character Expressions
Summary ‘

Vocabulary

Exercises

ARRAYS

Introduction

Arrays and Subscripts in FORTRAN

Dimension Declarations

Style Module—Subscript Errors and How to Prevent
Them

Style Module——A Subtle Subscript Error
Two-Dimensional Arrays

Higher-Dimensional Arrays

Implied DO Loops

Style Module—Data Structures and Top-Down Design
Summary

Vocabulary

Exercises

SUBPROGRAMS

Introduction
intrinsic Functions

Xi

134
135
136
136
137

145

145
145
146
148
150
151
154
156
163
171
172
172

181

181
182
183

196
202
204
206
207
211
218
219
219

229

229
230



xii CONTENTS

Function Subprograms 239
The FUNCTION Statement 241
Program Units 243
Arguments 243
The RETURN Statement 245
Character Data as a Function Argument 247
Character Data as a Function Value 248
Changing the Value of an Argument 251
Subroutines 254
Arrays in Subprograms 258
Style Module—Subscript Errors in Subprograms 263
Style Module—Subprogram Style 265
Style Module—Subprograms and Data Structures 267
Style Module—Subprograms and Top-Down Design 270
Top-Down Testing 276
Subprogram Structure Diagrams 277
Summary 278
Vocabulary 279
Exercises 280
8 FORMATTED INPUT AND OUTPUT 293
. Introduction 293
The Formatted PRINT and READ Statements 293
The FORMAT Statement 295
Input and Qutput Fields 296
The 1 Edit Descriptor 299
The F Edit Descriptor 302
The Apostrophe Edit Descriptor 308
The X Edit Descriptor 308
The E Edit Descriptor 309
The A Edit Descriptor 311
The L Edit Descriptor 312
Carriage Control 312
Some Common Mistakes 315
The BN and BZ Edit Descriptors 317
The Stash in the FORMAT Statement 318
The T, TL, and TR Edit Descriptors 320
Repeat Factors 321
interaction of the Input-Output List 'with the Format 322
An Alternative Way of Writing Format Specifications 324
Summary 326
Vocabulary 327

Exercises . 327

B,



CONTENTS

-9

10

FILES

Introduction

Records, Files, and Units

READ and WRITE Statements

The OPEN and CLOSE Statements
The Input-Output Status Specifier

REWIND, BACKSPACE, and ENDFILE Statements

Internal Files

The Unformatted READ and WRITE Statermnents

Direct Access Files
Summary
Vocabulary
Exercises

ADDITIONAL TOPICS

introduction

Complex Numbers

Double-Precision Numbers

The DATA Statement

The Computed GO TO

The Assigned GO TO

The Arithmetic IF Statement

Common Storage

BLOCK DATA Subprograms
Statement Functions

The SAVE Statement :
Alternate Returns from a SUBROUTINE
The EXTERNAL Statement

The EQUIVALENCE Statement
Summary

Vocabulary

Exercises

INTRINSIC FUNCTIONS
ANSWERS TO SELECTED EXERCISES

INDEX

Xiif

337

337
338
339
341
342
346
350
356
357
363
364
364

371

371
371

378

381
383
384
385
386
389
389
391
392
393
395
396
397
397

403
415

445



i 1 AR

COMPUTERS,
ALGORITHMS,
AND PROGRAM
DESIGN

INTRODUCTION In science fiction novels, in movies, and in cartoons, com-
puters are often represented as being much like superintelligent human
beings. In such works of fiction, computers converse fluently in the English
language, exercise independent judgment in solving problems, and-are able to
retrieve from their memory banks all pertinent data for any problem at a
moment’s notice. It is an exciting dream. And one of the exciting aspects of
studying computing is that the dream may someday come true—perhaps
within your lifetime.

But the day of the genuinely intelligent computer is still in the future. The
computers of today are incredibly fast, and they can follow extremely complex
sets of instructions, but they are just machines—in some ways, rather simple
machines at that. All a computer can really do is to follow very simple orders
which have been carefully thought out by a programmer  and writtén in a
programming language like FORTRAN.

in this book you will learn two things. The first thing is how to solve
problems with a computer—that is, how to make up instructions to the com-
puter to get your job done. Specifically, you will learn to design and write an
algorithm, which is a procedure that a computer can carry out. -

In this chapter we exptlain what an algorithm is, how you can represent an
algorithm by a kind of diagram called a flowchart, and how you can use the
method of top-down design to invent an algorithm.

After you design an algorithm to solve your problem, you must express the
algorithm in a language that the computer can understand. A computer
program is an aigorithm written in a programming language like FORTRAN. So
the second thing you will learn, which goes hand in hand with the first, is how ,]
to write a FORTRAN program. .

5506347




2 | CHAPTER 1

) Chapter 1 will give you:an inueduction to the FORTRAN language. In
Chapter 2, you will see how to run a FORTRAN program on the computer.

ALGORITHMS

People are often imprecise when giving instructions to each other. A simple instruction
such as “Go to the store for a loaf of bread.” requires hundreds of decisions to carry
out: Should you go out the front door or the back? Should you turn left or right?
Which way ‘s the store? Where is the bread? Do you want whole- wheat, sourdough,
or carraway rye? People, having intelligence and reasoning abiiity, can figure out the
real meaning of general, ambiguous instructions. Computers, on the other hand, have
no common sense. When you write a procedure for a computer to carry out, avery
instruction must be explicit.

Suppose you want to solve a math problem using a calculator. You do not have a
calculator, but you have a friend who does, so you call her on the phone to ask for
help. She is not at home, but her young brother, who knows very little math, offers to
work the calculator if you will tell him exactly what to do. Now you must specify how
to solve your problem using instructions that are so precise and unambiguous that he
cannot possibly misinterpret them. You might say, “Enter the number 56.2, press the
plus key, enter the number 475.3, press the plus key, enter the number 11.63, press
the equals key, and read me the number in lights at the top.” This is an aigorithm,
expressed in English.

An algorithm* is a step-by-step procedure for solving a problem. A correct
algorithm must meet three conditions:

1. Each step in the algorithm must be an instruction that can be carried out.
2. The order of the steps must be precisely determined
3. The algorithm must eventually terminate.

An algorithm does not necessarily have to be written for a computer. You could
carry out the instructions with a paper and pencil, for example. A cookbook might
give an “algorithm™ for baking chocolate chip cookies. The instruction *“Bake until
done.”’ might be meaningful for a human cook, so it satisfies the first condition for an

algorithm.
It would be convenient if you could just tell a computer ““Solve the following
problem . . . and make the machine obey. A computer, however, has an instruction

set consnstmg of only a hundred or so basic commands that it can carry out elec-
tronically. These commands are similar to the commands you can give to a calculator
by pressing the keys. For example, you can tell a computer to add two numbers. The
first condition for a correct algorithm means that when writing an algorithm for a
computer, each step must be something that a computer can carry out by executing
these basic instructions.

In carrying out the instructions in an algorithm, the machine performs one

*The word algorithm comes from the name of the Persian mathematician al-Khowarizmi (c. 825).



COMPUTERS, ALGORITHMS, AND PROGRAM DESIGN 3

instruction at a time. The second condition for a correct algorithm means that the
algorithm must precisely specify the order in which the instructions are performed.

The third condition means that an algorithm must not go on forever. The
following procedure, then, is not an algorithm. '

Procedure to Count

Step 1 Let N equal zero.
Step 2. Add 1 to N.
Step 3 Go to Step 2.

If you tried to have a computer carry out this procedure, the machine would, in
theory, run forever. The following procedure, on the other hand, is an algorithm,
because it will eventually terminate.

Algorithm to Count to One Million

Step | Let N equal zero.

Step2 Add 1 to N.

Step 3 If N is less than 1,000,000, then go to Step 2; otherwise, halt.

TOP-DOWN DESIGN

When working on an algorithm for a simple problem, a solution may suddealy occur
to you after just thinking about the problem for a while. Practical computer applica-
tions, however; are seldom so simple. Professional programmers commonly write
programs consisting of thousands of computer instructions. Designing such a program
can be as complicated as designing a machine with thousands of parts. In order for it
to work, all the pieces must fit together in an organized framework.

Top-down design is an approach to the problem of designing an algorithm. It isa
method you can use to organize your work and also to organize your algorithm.

In some ways, designing an algorithm is similar to writing an essay. When

writing an essay, you begin with a general idea of what you want to say. You then

proceed to organize your thoughts and choose words to convey your meaning to the
reader. When designing an algorithm, you begin with a general idea of what you want
it to do. Yon must then orgapize your ideas and choose the right sequence of
instructions to the computer that make it carry out the desired actions. But in
programming, as in writing, it is often difficult to know where to begin.

A good way. to begin writing an essay is to make an outline. First, you set forth
the main. topics to be covered, as in.the following example:

Gettysburg Speech
I. Conception of the nation
. 1I. The current civil war
III. Our purpose here today
"IV. Our resolve for the future




4 CHAPTER 1

This bare outline provides a framework for the essay, into which all the paragraphs
and sentences -will fit. The overall structure is determined, and what remains is to
elaborate the topics in more detail. You can do that by adding subheadings under each
topic, as in the following example:

Gettysbury Spezch
I. Conception of the nation
A. The nation was founded 87 years ago.
B. It was conceived in liberty.
C. It was dedicated to the proposition that all men (persons") are created
equal.
II. The current civil war
A. We are now engaged in civil war.
B. The war tests the ability of this nation. as conceived by iis founders, to
endure.
III. Our purpose here today
A. We are meeting on a battlefield of the civil war.
B. We dedicate a portion of this field as a cemetery.
C. The soldiers who fought here have consecrated this ground with their
brave struggle.
IV. Our resclve for the future
A. We must dedicate ourselves to the unfinished work before us.
B. We must devote ourselves to the cause for which the dead have fought.
C. We must preserve the ideals of freedom in which the nation was con-
ceived.

Of course, even with the best of outlines to work from, one cannot hope always
to emulate Lincoln’s deathless prose; but good writing is always well organized, and
making an outline is a very useful way to begin.

In programming, as in writing, good organization is vital. Before beginning to fill
in the details, it is best to have a clear overall plan. The method of top-down design is
like making an outline of an algorithm. The first stop iz to formulate a general plan—
like writing the main topics in an outline. Next, you fill in more detail, like making
subheads in an outline, to specify how to carry out each major step. By successively
refining this plan, adding more detail at each stage in the development, you arrive at
your ultimate goal: a precise algorithm that can be expressed in terms of the basic
types of instructions that a computer can follow.

As an illustration, suppose you want to write an algorithm (we’ll call it Algorithm
X), to solve some homework problem for your algebra class. As you begin, you have
a rough idea of what the algorithm should do, but little idea of the specific. instruc-
tions. At this point, you conceive of Algorithm X as a single entity (Figure 1.1).

As you think about the problem some more, you realize that there are really three
parts to the solution, and you say to yourself “If I could do Part 1, and then Part 2,
and Part 3, that would solve the problem.” This is your top-level design, as shown in
Figure 1.2.

nt



e

- — .

COMPUTERS, ALGORITHMS, AND PROGRAM DESIGN 5
FIGURE 11
Algorithm
X

As you begin to write an aigorithm you conceive of it as a single entry.

FIGURE 1.2
Part 1
Algorithm Part 2
X
Part 3

in the method of top-down design, you first specify the general organization of the algoritam.

"You may not have a detailed algorithm yet, but you have made some progress;
instead of one big problem, you have three smaller- ones to solve. Continuing your
analysis, you might find that Part 1 can be broken down into two subproblems—Part
{A and Part 1B—and that Parts 2 and 3 can be similarly subdivided. This is your
second-level design, as shown in Figure 1.3. If the algorithm is complicated, you may
need to carry this process to yet another level of refinement. Eventally, you arrive at
a detailed plan that you can write in computer language.

In summary, the basic principle of top-down design is this:

Concentrate first on the overall design of the algorithm. Write it as a sequence of general
steps to be carricd out. Then, using the same method, fill in the details for each step.

An important principle in top-down design is validation, which means analyzing
your algorithm to make sure that it is correct. Even though your first draft of an
algorithm may be an outline, it must be a valid solution to the problem you are trying
to solve. The question you should ask yourself is this: if you could carry out each step
in your proposed algorithm, would that really solve the problem? Thus, a second
principle of top-down design is this:

At each stage of the top-down design process, validate your algorithm by analyzing it for
correctness. Do not expand on the details until vou are sure that the overall plan is sound.




