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Preface

Apart from its own intrinsic interest, a knowledge of differentiable
manifolds has become useful-—even mandatory—in'an ever-increasing
number of areas of mathematics and of its applications. This is not too
surprising, since differentiable manifolds are the underlying, if unacknow-
ledged, objects of study in much of advanced calculus and analysis. Indeed,
such topics as line and surface integrals, divergence and curl of vector

fields, and Stokes’s and Green’s theoremis find their most natural setting in

manifold theory: But however natural the leap from calculus on domains of
Euclidean space to calculus on manifolds may be to those who have made
it, it is not at all easy for most students. It usually involves many weeks
of concentrated work with very general concepts (whose importance is not
clear until later) during which the relation to the already familiar ideas in
calculus and linear algebra become lost—not irretrievably, but for all too -
long. Simple but nontrivial examples that illustrate the necessny for the
high level of abstraction are not gasy to present at this stage, and a
realization of the power and atility of the methods must often be postponed
for a dismayingly long time. '

This book was planned and written as a text for a two-semester course
designed, it is hoped to overcome, or at least to minimize, some of these
difficulties. It has, in fact, been.used successfully several times in preliminary
form as class notes for a two-seester course intended to lead the student
from a reasonable mastery of advanced (muluvarlable) calculus and a
rudimeniary knowledge of general topology and linear algebra to a solid

_fundamental knowledge of differéntiable manifolds, including some facility

in working with the basic tools of manifold theory: tensors, differential
forms, Lie and covariant derivatives, multiple integrals, and so on. Although
in overall content this book necessarily overlaps the several available
excellent books on manifold theory, there are differences in presentation and
empbhasis which, it is hoped, will make it particularly suitable as an introduc-
tory text.
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xii ) PREFACE

To begin with, it is more elmentary and less encyclopedic than
most books on this subject. Special care has been taken to review, and
then to develop, the connections with advanced calculus. In particular, all
of Chapter II is devoted to functions and mappings on open subsets of
Euclidean space, including a careful exposition and proof of the inverse
function theorem. Efforts are made throughout to introduce new ideas
gradually and with as much attention to intuition as possible. This has led
to a longer but more keadable presentation of inherently difficult material.
Wl'len manifolds are first defined, an effort is made to have as many non-
trivial examples as possible; for this reason, Lie groups, especially matrix
groups, and certain quotient manifolds -are introduced early and used
throughout as examples. A fairly large number of problems (almost 400)
is included to develop intuition and computational skills.

Further, it may be said that there has been a conscious effort to avoid
or at least to economize generality insofar as that is possible. Concepts are
often introduced in a rather ad hoc way with only the generality needed
and, if possible, only when they are actually needed for some specific purpose.
This is particularly noticeable in the treatment of tensors—which is far from
general—and in the brief introduction to vector bundles (more specifically
to the tangent bundle). Thus it is not claimed that this is a compre-
hensive book ; the student will emerge with gaps in his knowledge of various
subjects treated (for example, Lie groups or Riemannian geometry). On the
other hand it is hoped that he will acquire strong motivation, computa-
tional skills, and a feeling for the subject that will make it easy for him to
proceed to more advanced work in any of a number of areas using manifold

“theory: differential topology, Lie groups, symmetric and homogeneous
spaces, harmonic analysis, dynamical systems, Morse theory, Riemann
surfaces, and so on. o

Finally, it should be said that the author has tried to include at every
stage results that illustrate the power of these ideas. Chapter V1 is especially
noteéworthy in this respect in that it includes complete proofs of Brouwer’s
fixed point theorem and of the nonexistence of nowhere-vanishing continuous
vector fields on even-dimensional spheres. In a similar vein, the existence
of a bi-invariant measure on compact Lie groups is demonstrated and
applied to prove the complete reducibility of their linear representations.
Then, in a later chapter, compact groups are used as simple examples of
symmetric spaces, and their corresponding geometry is used to prove that
every element lies on a one-parameter subgroup. In the last two chapters,
which deal with Riemannian geometry of abstract n-dimensional manifolds,
the relation to the more easily visualized geometry of curves and surfaces
in Euclidean space is carefully spelled out and is used to develop the general
ideas for which such applications as the Hopf-Rinow theorem are given.
Thus, by a selection of accessible but important applications, some truly
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nontrivial, unexpected (to the student) results are obtamed from the abstract
machinery so patiently constructed.

Briefly, the organization of the book is as follows. Chapter Iisa very
intuitive introduction and fixes some of the conventions and notation that
are used. Chapter II is largely advanced calculus and may very well be
omitted or skimmed by better prepared readers. In Chapter 111, the basic
concept of differentiable manifold is introduced along with mappings of
manifolds and their properties; a fairly extensive discussion of examples is
included. Chapter IV is particularly concerned with vectors and vector
fields and with a careful exposition of the existence theorem for solutions

- of systems of ordinary differential equations and the related one-parameter

group action. In Chapter V covariant tensors and differential forms are
treated in some detail and then used to develop a theory of integration
on manifolds in Chapter VI. Numerous applications are given. It would
be possible to use Chapters II-VI as the basis of a one-semester course
for students who wish to learn the fundamentas of differentiable manifolds
without any Riemannian geometry. On the other hand, for students who
already have some experience with manifolds, Chapters VII and VIII could

. serve as a brief introduction to Riemannian geometry. In these last two

chapters, beginning from curves and surfaces in Euclidean space, the concept
of Riemannian ‘connection and covariant differentiation is carefully
developed "and used to give a fairly extensive discussion of geodesics—
including the Hopf-Rinow theorem—and a shorter treatment of curvature.
The natural (bi-invariant) geometry on compact Lie groups and Riemannian
manifolds of constant curvature are both discussed in some detail as examples
of the general theory. This discussion is based on a fairly complete treatment
of oovermg spaces, discontinuous group action, and the fundamental
group given earlier in the book.

.This book, as do many of the books in this subject, owes much to the
influence of S. S. Chern. For many years his University of Chicago notes—
—still an important reference (Chern [ 1])—were virtually the only systematic
account of most of the topics in this text. Even more importantly his
courses, lectures, published works, and above all his personal encourage-

" ment have had an impressive influence on a whole generation of differential

geometers, among whom this author had the good fortune to be included.
Another source of inspiration to the author was the work of John Milnor.
The manner in which he has made exciting fundamental research in
differential topology and geometry available to specnahst and nonspecialist
alike through many careful expository works (written in a style that this
author particularly admires) certainly deserves gratitude. No better material
for further or supplemental reading to this text could be suggested than
Milnor’s two books [1] and [2].

For part of the time during which this book was being written, the
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author benefitted from a visiting professorship at the University of
Strasbourg, France, and he is particularly grateful for the opportunity to
work there, in an atmosphere so conducive to advancing in the task he
had undertaken. .

The author would also like to acknowledge with gratitude the help given
to him by his son, Thomas Boothby, by students and colleagues at
Washington University, especially Humberto Alagia and Eduardo Cattani,
and by Mrs. Virginia Hundley for her careful work preparing the manuscript.
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I INTRODUCTION TO MANIFOLDS

In this chapter, we establish some preliminary notations and give an intuitive, geometric
discussion of a number of examples of manifolds—the primary objects of study theeughout the
book. Most of these examples are surfaces in Euclidean space; for these—togetber with curves
on the plane and in space—were the original objects of study in classical dnﬂ'erentlal geometry
and are the source of much of the current theory.

"The first two sec’upns deal primarily with notational matters and thé relation betwéen
Euclidean space; its model R, and real vector spaces. In Section 3 a precise definition of
topological manifolds is.given, and in the ;emaining sections this concept is illustrated.

i

1 Preliminary Comments on R"

Let R denote the real numbers and R their n-fold Cartesian product

n

éx..'xk’

the set of all ordered n-tuples (x', ..., x") of real numbers. Individual n-
tuples may be denoted at times by a single letter. Thus x = (x!,..., x"),
a=(a',...,a"), and so on. We agree once and for all to use on R" its

PRRRS

topology as a metric space with the metric defined by

d(x, y) = (Z(x - ) ) -

i=1

1
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2 | INTRODUCTION TO MANIFOLDS

The neighborhoods are then open balls 'B’,'(x), or B,(x)or, equivalently, open
cubes C}(x), or C,(x) defined for any &€ > 0 as

B,(x) = {ye R*| d(x, y) < &},
and
Cx)={yeR"| |x' - y| <gi=1,...,n}

a cube of side 2¢ and center x. Note that R' = R and we define R tobe a
single point.

We shall invariably consider R" with the topology defined by the metric.
This space R" is used in several senses, however, and we must usually decide
from the context which one is intended. Sométimes R” means merely R” as
topological space, sometimes R" denotes an n-dimensional vector space, and

- sometimes it is identified with Euclidean space. We will comment on this last
identification in Section 2 and examine here the other meanings or R".

We assume that the definition and basic theorems of vector spaces over
R are known to the reader. Among these is the theorem which states that any
two vector spaces over R which have the same dimension n are isomorphic.
It is important to note that this isomorphism depends on choices of bases in
the two spaces; there is in general no natural or canonical isomorphism
independent of these choices. However, there does exist one important
example of an n-dimensional vector space over R which has a distinguished
or canonical basis—a basis which is somehow given by the nature of the
space itself. We refer to the vector space of n-tuples of real numbers with
componentwise addition and scalar multiplication. This is, as a set at least,
just R"; should we wish on occasion to avoid confusion, then we will denote
it by V" (and use boldface for its elements (x instead of x, and so forth), For
this space the n-tuples e, = (1,0,...,0),...,e,= (0,0, ..., 0, 1).are a basis,
known as the natural or canonical basis. We may at times suppose that the
n-tuples are written as rows, that is, 1 x n matrices, and at other times as
columns, that is, n x 1 matrices. This only becomes important should we
wish to use matrix notation to simplify things a bit, for example, to describe
linear mappings, equations, and so on.

Thus R" may denote a vector space of dimension n over R. We sometimes
mean even more by R". An abstract n-diménsional vector space over R is
called Euclidean if it has defined on it a positive definite inner product. In
general there is no natural way to choose such an inner product, but in the
case of R” or V", agam we have the natural inner product

(X_, Y) = _Z xiyi'

It is characterized by the fact that relative to this inner product the natural
basis is orthonormal, (e;, e;) = §;;.
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Thus at times R" is a Euclidean vector space, but one which has a built-in
orthonormal basis and inner product. An abstract vector space, even if
Euclidean, does not have any such preferred basis. The metric in R" dis-
cussed at the beginning can be defined using the inner product on R". We
define ||x||, the norm of the vector x, by [x|| = ((x, x))'/%. Then we have

d(x, y) = ||Ix — y|.

This notation s frequently useful even when we are dealing with R" as a
metric space and not using its vector space structure. Note, in particular,
that | x| = d(x, 0), the distance from the point x to the origin. In this equal-
ity x is a vector on the left-hand side, and x is the corresponding point on
the right-hand side; an illustration of the way various interpretations of R* -
can be mixed together.

Exercises

1. Show thatif Aisanm x n matrix, then the mapping from V* to V™ (with

elements written as n x 1 and m x 1 matrices), which is defined by
'y = Ax, is contiriuous. Identify the images of the carionical basis of V" as
linear combinations of the canon:cal basis of V™.

2. Find conditions for the mapping of Exercise l to be onto; -to be
one-to-one:

3. Show that if Wis an n-dimensional Euclldean vector spaoe, then there
exists an isometry, that is, an isomorphism preserving the inner product,
of W onto R* interpreted as Euclidean vector space.

4. Show that C, the space of n-tuples of complex numbers, may be placed
in one-to-one correspondence with R?*. Can this compondence bea

" vector space isomorphisi?
5. [Exhibit an isomorphism between the vector space of m x n matrices
" over R and the vector space R™". Show that the map X — AX, where .4
is a fixed m x m matnix and X is an arbitrary m x nmatnx(overR),ls '
continuous in the topology derived from R™.
6. Show that ||x|| has the following properties:

(@) |x+y|< x| + {y;

®) x| —fyl < Ix-yl;

() [lox}| = |a] x|, xe R; and ,

(d) explain how (a) is related to the triangle inequality of d(x, y).

7. Show that an isometry of a Euclidean vector space onto itself has an
orthogonal matrix relative to any orthonormal basis.

8. Prove that every Euclidgean vector space ¥ has an orthonormal basis.
Construct your proof in such a way that if W is a given subspace of ¥,
dim W = r, then the first r vectors of the basis of V are a basis of W,

|
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2 R" and Euclidean Space

Another role which R" plays is that of a model for n-dimensional
Euclidean space E", in the sense of Euclidean geometry. In fact many texts
simply refer to R" with the metric d(x, y) as Euclidean space. This
identification is misleading in the same sense that it would be misleading to
identify all r.-dimensional vector spaces with R"; moreover unless clearly
understood, it is an identification that can hamper clarification of the con-
cept of manifold and the role of coordinates. Certainly Euclid and the
geometers before the seventeenth century did not think of the Euclidean
plane or three-dimensional space—which we denote by E? and E>—as pairs
or triples of real numbers. In fact they were defined axiomatically beginning
with undefined objects such as points and lines together with a list of their
properties—the axioms—from which the theorems of geometry were then
deduced. This is the path which we all follow in learning the basic ideas of
Euclidean plane and solid geometry, about which most of us know quite a
bit before studying analytic or coordinate geometry at all. The identification
of R" and E" came about afte. the invention of analytic geometry by Fermat
and Descartes and was eagerly seized upon since it is very tricky and
difficult to give a suitable definition of Euclidean space, of any dimension, in
the spirit of Euclid, that is, by giving axioms for (abstract) Euclidean space
as one does for abstract vector spaces. This d.fficulty was certainly
recognized for a very long time, and has interested mahy great mathemati-
cians. It led in part to the discovery of non-Euclidean geometries and thus to
manifolds. A careful axiomatic definition of Euclidean space is given by
_Hijlbert [1). Since our use of Euclidean geometry is mainly to aid our
intuition, we shall be content with assummg that the reader “knows” this
geometry from high school. :

Consider the Euclidean plane E? as studled in high school geometry;
definitions are made, theorems proved, and so on, without coordinates. One
later introduces coordinates using the notions of length and perpendicular-
ity in choosing two mutually perpendicular “ iumber axes” which are used
to define a one-to-one mapping of E? onto R? by p -» (x(p), y(p)), the coor-
dinates of pe E?. This mapping is (by design) an isometry, preserving dis-
tances of points of E2 and their images in R% Finally one obtains further
correspondences of essential geometric elements, for examplc, lines of E?
with subsets of R? consisting of the solutions of linear equations. Thus we
carry each geometric object to a corresponding one in R2. It is the existence
of such coordinate mappings which make the identification of E* and R?
possible. But caution! An arbitrary choice of coordinates is involved, there is
no natural, geometrically determined way to identify the two spaces. Thus, at
best, we can say that R? may be identified with E? plus a coordinate system.
Even then we need to define in R? the notions of line, angle of lines, and
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other attributes of the Euclidean plane before thinking of it as Euclidean
space. Thus, with qualifications, we may identify E? and R? or E" and R",
especially remembering that they carry a choice of rectangular coordinates.
We-conclude with a brief indication of why we might not always wish to
make the identification, that is, to use the analytic geometry approach to the
study of a geometry. Whenever E” and R" are identified it involves the choice
of a coordinate system, as we have seen. It then becomes difficult at times to
distinguish underlying geometric properties from those which depend on the
choice of coordinates. An example: Having identified E? and R? and lines
with the graphs of linear equations, for instance, ‘

={(x y)|y = mx + b},

we deﬁne the slope m-and the y-intercept b. Neither has geometric meaning;
they depend on the choice of coordinates. However, given two such lines of
slope my, m,, the expression (m, — m,)/(1 + m; m,) does have geometric
meaning. This can be demonstrated by directly checking independence of
the choice of coordinates—a tedious process—or determining that its value
is the tangent of the angle between the lines, a concept which is independent
of coordinates! It should be clear that it can be difficult to do geometry, even
in the simplest case of Euclidean geometry, working with coordinates alone, -
that is, with the model R". We need to develop both the coordinate method
and the coordinate-free method of approach. Thus’ we shall often seek ways
of looking at manifolds and their geometry which do not lnvélve coordin-
ates, but will use coordinates as a useful ‘computatronal dévice (and ‘more)
when necessary.

‘ However, being aware now of what j s involved, we shall usually refer to
R" as Euclidean space and make the 1dent1ﬁcatlon This is especuﬂly true
when we are interested only in questlons mvolvmg topology—as in the next'
section—or dltferentlablllty .

Exercisss

1. 'Using standard equations for change of Cartesian coordinates, verify
that (my, — m,)/(1 + m; m,) is independent of the choice of coordinates.

2. Similarly, show that ((x; — x;)? + (y, — y1)?)"/?is 4 function of points
Pi(xy, y1) and Py(x3, y2) which does not depend on the ch01ce of
coordinatés. - S

3. . How do we describe the subset of R" Wthh corresponds to a segment rq
in E"? to a line? to a 2-plane not through the origin?

M we wish to prove the theorems of Euclidean geometry by analytical geometry methods, -
we need to define the notion of congruence We say that two figures ate congruent if there is a
rigid motion of the space, that is, an isometry or dlstance-preservmg transformatlon, which
carries one ﬁgure to the other.
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4. Identifying E* with R?, describe analytically the rigid motions of R?.
Show that they form a group.

5. Using Exercise 4 prove that two triangles are congruent if and only if
corresponding sides are of equal length.

3 Topolagical Manifolds

Of all the spaces which one studies in topology the Euclidean spaces and
their subspaces are the most important. As we have just seen, the metric
spaces R" serve as a topological model for Euclidean space E", for finite-
dimensional vector spaces over R or C, and for other basic mathematical
systems which we shall encounter later. It is natural enough that we are led
to study those spaces which are locally like R", more precisely those spaces
for which each point p has a neighborhood U which is homeomorphlc toan
open subset U’ of R", n fixed. We say that a space with this property is locally
Euclidean of dimension n, and in order to stay as close as possible to
Euclidean spaces, we will consider spaom called manifolds, defined as
follows. :

(3.1) Definition A manifold M of dimension n, or n-manifold, is a topologi-
cal space with the following properties:

(i) M is Hausdorfl,
* (ii) M is locally Euclidean of dimension n, and
(iii) M has a countable basis of open sets.

As a matter of notation dim M is used for the dimension of M; when
dim M = 0, then M is a countable space with the discrete topology. It
follows from the homeomorphism of U and U’ that locally Euclidean is
equivalent to the requirement that each point p have a neighborhood U
homeomorphic to an n-ball in R". Thus a manifold of dimension 1 is locally
homeomorphic to an open interval, a manifold of dimension 2 is locally
homeomorphic to an open disk, and so on. Our first examples will remove
any lingering suspicion that an n-manifold is neoessanly globally equivalent,
that is, homeomorphic, to E.

(3.2) Example Let M be an open subset of R" with the subspace topo-
logy; then M is an n-manifold.

Indeed properties (i) and (iii) of Definition 3.1 are hereditary, holding for
any subspace of a space which possesses them; and we see that (ii) holds with
U = U’ = M and with the homeomorphism of U to U’ being the identity
‘map. A bit of imagination, assisted perhaps by Fig. L.1, will show that even
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L

(o)

Figure 1.1
(a) The manifold is the open set M of R? between the curves C,and C'. (b) The manifold is
the open subset of R® obtained by removing the knots.

when n = 2 or 3 these examples can be rather complicated and certainly not
equivalent to Euclidean space in general, although they may be in special
* cases: a trivial such case is M = E"

(33) Example The simplest examples of manifolds not homeomorphic to
open subsets of Euclidean space are the circle S! and the 2-sphere $2, which
may be defined to be all points of EZ, or of E, respectively, which are at unit
distance from a fixed point 0.

These are to be taken with the subspace topology so that (i) and (iii) are
immediate. To see that they are locally Euclidean we introduce coordinate
axes with 0 as origin in the corresponding ambient Euclidean space. Thus in
the case of S we identify R? and E3, and §? becomes the unit sphere
centered at the origin. At each point p of S? we have a tangent plane and a
unit normal vector N,. There will be a coordinate axis which is not perpen-
dicular to N, and some neighborhood U of p on $? will then project in a
continuous and one-to-one fashion onto an open set U’ of the coordinate
plane perpendicular to that axis. In Fig. 1.2a, N, is not perpendicular to the
x,-axis so for ge U, the projection is given quite explicitly by ¢(q) =
(x*(9), 0, x*(g)); where (x'(g), x*(g), x*(q)) are the coordinates of q in E°.
Similar considerations show that S' is locally Euclidean. Note that $? and
R? cannot be homeomorphic since one is compact while the other is not.

(34) Example Our final example is that of the surface of revolution ob-
tained by revolving a circle around an axis which does not intersect it. The
figure ‘we obtain is the torus or “inner tube” (denoted T?) as shown in
Fig. 1.2b. This figure can be studied analytically; it is easy to write down an

R



