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FOREWORD

Mathematics are made to be understood, enjoyed and applied...

This text grew out of. a course that I gave several years con-
secutively. It contains more material than can be covered in a two
semesters course and, in particular, a selection of topics was
made each year. It is applications oriented and —I hope— will be
consulted by users (physicists, electrotechnicians, microtech-
nicians, engineers, ...). 'For this last purpose, I have added a’
few appendices and lists of formulae, even if they are not proved
in the text. -

I believe that cxcellent textbooks are now available for the
deductive point of view of analysis. Let me only mention

> W.Rudin "Principles of mathematical analysis"
and "Real and complex analysis” (on a higher level),

> H.Cartan "Cours de calcul différentiel”, N
> S.Lang "Analysis I"
(cf. Bibliography at the ehd of this volume).

My attempt is not to duplicate these, but rather delve into
thé wealth of applications (including historical ones).

Consequently, even if my formalization (or axiomatization) is
not pushed to its maximum, I hope that users will be able to grasp
the meaning of the mathematical concepts developed. Like proofs,
applications can enlighten the comprehension of a mathematical
result. An example will illustrate this point. Stokes' theorem can
be understood through its proof (via partiti .of unity on mani-
folds, simplices, showing the way to hamolagy...). But in this
optic, the Archimedes principle is lost and most modern treatises
avoid the surface element d«'r’ and its meaning (thus certainly
losing an important part of its applications).

My attempt here has been to recover these classical applica-
tions and to present them in an updated fashion.

I XN
The central idea in this calculus course is that of
LINEARIZATION.

It occurs in the notion of derivative (tangent linear map)
and differential linear forms (fields of linear forms). In these
first two parts, finite dimensional vector spaces play the central
role (although Q'(R") is already infinite dimensional). The third
part constitutes an introduction to functional analysis and thus,
many infinite dimensional function spaces ‘are introduced and
examined. Convergence (and in particular uniform convergence) for -
sequences and series of functions is studied more or less
systematically : the importance of these concepts in analysis
cannot be overemphasized (definition of functions by means of
series or parametric integrals, to mention only these). Finally,
the fourth part on Fourier series: studies the linear operators
which associate to a periodic function f its Fourier sequence
(c, (f)) , and to a sequence (¢, ) the series c e
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Since students were supposed to have alr eady feliowed a first
calculus course and a linear algebra course, 1
granted the Cauchy-Schwarz inequality in ®" (and from the
first. chapter onwards). However this inequality, . in the 'more gene-
ral context of scalar products, is proved later on (chapter 17).
In a similar vein, I have already used the possibility of
differentiating a parametric integral in the first part, although
the Leibniz rule is only given and proved in chapter 16. I believe
that these transgressions to a strict deductive order will not
cause any difficulty. My purpose was to.make a reascnably short
book with many applications of the theory. This forced me to raise
the level of sophistication within each part. For example, PART 3
on functional spaces starts quite elementarily with the notion -of
uniform convergence for centinuous functions and ends with a few
notions and results for the Lebesgue spaces L.

#a's

(¥4

Let me now explainafew CONVENTION S.

For simplicity, I have adopted a single ' numbering for all
sections. Thus, 8.5 refers to Chap.8, s=c.5 (potentials : defini-
tions). Important results are given a special name, and if a sec-
tion contains several theorems, this namé will help in finding
which particular result is referred to (my experience shows. that
three —or fourl— figure cross  references are awkward and
difficult to remember whereas names are more suggestive). Figures
are numbered separately. i v

The symbol m denotes the end of a proof, or the end of a sta-
tement whvse proof has already been given or whose proof will not
be given. The symbol o indicates the end of a statement whose
proof follows. .. ., ;

The term canoniéal is used for algorithmic constructions (in-
depen .ent of ‘arbitrary choices). Fog“-example. the "canonical basis
of R is e = '1,0,..,,0), e, = 0,1,0,...,0), ... But there is

no canonical basis in the two-dimensional . vector space of . solu-
tions of the differentjal equation y" + y = 0. Similarly, the term
intrinsic refers to a construction or definition which is made in-
dependently from choices of bases.

1 the statement of a theorem, the numeration i), ii),... is
resered for equivalent properties (this is repeated in each case)
and thus different assertions would be numbered differently e.g.
as a), b),... or 1), 2),... - ; .

Finally, it is a pleasure to acknowledge the help that I got
during the writing of this book. Ll :

Let me thank especially D. Straubhaar and M. Lanz who helped
me with first versions, D. Jeandupeux who carefully read the
proofs of . the final version and suggested a few improvements, and
Jast but not least, my wife Ann who checked my English and
corrected - many misprints (but I take full responsibility for
remaining mistakes...). -

-

Neuchitel, August 1988 A. “Robert
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PRERXREQUISITES AND NOTATIONS

Although it woubi be difficult to make an exhaustive list of
wwequisites for this beok (I have already mentioned that the le-
=t sophistication Increases somehow inside each part), it may
2 helpful to list =mine terminology used throughout the book.

Generalities

irjective = one to one into (i.e. f(x) = f(y) = x = y).

‘A denotes the transpose ?T a matrix, and in particular, if x ¢ R"
denotes a column vector, x = (xl, ,xn) is a row vector with n

components and x = t(xl, ,xn). In particular A = '(*A) = A
f]x : restriction of amap f : E — F to a subset X ¢ E.
id. : identity function £ — E.
.f f is a map, X = Tix) is the correspondence for eiements.
The basic numerical sets are denoted by

N = (0,1,2,3,...} : natural numbers,

Z = {...,~1,0,1,2,...} ring of rational integers,

8, R, C : fields of rational, resp. real and complex numbers.
I x } denotes a Cartesian product (e.g. a rectangle in R* = R x R)

sinx, cosx, tan x, cot X = 1/tan x, Arctan x € }n/2, x/2[ denote
the usual trigonometric func%lons wgeras Shx, Chx, Thx denote the
hyperbelic functions {s.g. Ch"x - Sh“x = 1),

Linear algebra
R": Euclidean space.of n-tuples of real numbers (column vectors)
€": vector space consisting of n-tuples of complex numbers

All vector spaces E to bz considered have field of scalars R or €
{and the context shouid always make it clear which!)

Form = scalar valued homogeneous function E — R (or C)
(e.g. linear form, quadratic form,...)

E’ : dval of E, space of linear forms on E,
E" = (E') : dual of E’, bi-dua! of E
¢ : E — E" Dirac evaluation map, e.(v) = pla)

Kizpecker symbol 8, = es; <8(=0 if i#j and = 1 If i=j)

@ :ae linear span of A (in a vector space E)

YEF) = Ho!;x(E.F) : space of linear maps E — F,

#,[R), M (C): ring of n x n matrices with real (resp. €) entries

DEY ¢ #(E) = £(E,E) : group of invertible linear transformations
of E in itself ' ! o

6L (R} < MF(R) : group ¢f a by n invertible matrices with real
1 L3

entries (similarly for Sln(C) < un(c) for complex entries)

5
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Matrix representation of an operator in a basis : A = (aj)

Tttr'.e j"‘column of A is made up with the components of the
j i tor : A = ae ,

j | basis ve:: or (ej) Zl 2

Tr(A) = ):ia, : trace of A,

det(A) : determinant of A .

Some familiarity with orthonormal bases, eigenvectors and charac-
teristic vectors (Jordan reduced form) is assumed.

Analysis
Derivative at O of a function f : [0,1] —> R means

right derivative (similarly at 1 : left derivative)

o(x") represents a function f such that |f(x)/x"| — 0
for x — a (and a is given explicitely in each context).

»

O(x*) represents a function f such that I (x)/x*| remains bounded
for x — a (and a is given emplicitely in each context).

f(x) ~ g(x) means f(x)/g(x) — 1, (for x — a as before)

Topology

We assume that the reader is familiar with the intuitive notions
of open and of closed subsets of R". Neighborhoods of points and
limits _ of sequences are also used here without comment. A compact
set in R" is siniply a closed and bounded subset : on a compact
set, a continuous function always attains a maximum (hence is

bounded).

This book has been typed with CHI-WRITER, produced and dis-~
tributed by -

Horstman Software Design Corp.

P.0.Box 5039

SAN JOSE, CA 95150 U.S.A.
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VITOMNS AN NOTATIONS

N 41}
In this chanter we shall study mappings frow. a subset U < R
to soime other ™. The vector spaces R® and R™ will be considered

as real vector spaces whose elements are column vectors
x = Z]='(x,...,x)e$€n (x. € R).
l 1 n i

(For typographical reasons, we shall often use ‘the row notation
preceded by the upp;:r "t" meaning "transpose” instead of tﬁe
column notation.) Special values of the exponent n (or m) will
lead to mteresung applications For example, n = 3 leads to the
usual physical space R whose elements will more convemently be
denoted by

?:ra[ ] (x.y,z)eR:’

Occasionally, we shall even idennfy a wvector r to its extremity P
cnce a fixed origin O has been chosen. Thus. the compaonents of r
OB are taken as coordinates of ‘the point P. ‘

We shall also. have t@ use row vectors a = {a, ... ,an) and
denote by Rn their vector space (observe the position of the index
n in this vector space).. Thus this space,lin is also a real vector
space of dimension n, but its elements have a different represen-
tation from those of R". We shall identify row vectors a € Rn to
linear forms on R™:

. s
a:x= [ . — (al....,an)[ x] =ax + ...+ angn.

n
In other words, we identify the vector space Rn of row vectors to

the dual of the vector space R" of column Vectors.
The vector spaces R" will-also be endowed with their usual

scalar product ' . .
XY =X\ 4 v XY (xand y e R).
This scalar product gives the Euclidean structure of the space ]
Let us also recall’ that the length of a vector x € R is given by
its norm
2,172

AX = V(x-x) = (X2 + ... + x°) z 0.
1 n

VECTOR MAPPINGS 1-1



