METHODS OF Experimental Physics

VOLUME 19

ULTRASONICS

Volume 19

Ultrasonics

Edited by

PETER D. EDMONDS

Bioengineering Research Center SRI International Menlo Park, California

1981

ACADEMIC PRESS

A Subsidiary of Harcourt Brace Jovan vich, Put 1995

New York London What Sydpley San Francisco

COPYRIGHT © 1981, BY ACADEMIC PRESS, INC. ALL RIGHTS RESERVED.

NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC OR MECHANICAL. INCLUDING PHOTOCOPY, RECORDING, OR ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT PERMISSION IN WRITING FROM THE PUBLISHER.

ACADEMIC PRESS, INC.
111 Fifth Avenue, New York, New York 10003

United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. 24/28 Oval Road, London NW1 7DX

Library of Congress Cataloging in Publication Data Main entry under title:

Ultrasonics.

(Methods of experimental physics; v. 19)
Includes bibliographical references and index.
1. Ultrasonics. I. Edmonds, Peter D. II. Series.
QC244.U43 534.5'5 80-28270
ISBN 0-12-475961-0

PRINTED IN THE UNITED STATES OF AMERICA

81 82 83 84 9 8 7 6 5 4 3 2 1

Methods of Experimental Physics

VOLUME 19

ULTRASONICS

METHODS OF EXPERIMENTAL PHYSICS:

L. Marton and C. Marton, Editors-in-Chief

CONTRIBUTORS

Numbers in parentheses indicate the pages on which the authors' contributions begin.

- ROBERT E. APFEL, Department of Engineering and Applied Science, Yale University, New Haven, Connecticut 06520 (355)
- A. John Barlow, Department of Electronics and Electrical Engineering, The University, Glasgow, G12 8QQ, Scotland (137)
- M. A. Breazeale, Department of Physics, The University of Tennessee, Knoxville, Tennessee 37916 (67)
- L. J. Busse,* Department of Physics, Washington University, St. Louis, Missouri 63130 (29)
- JOHN H. CANTRELL, JR., National Aeronautics and Space Administration, Langley Research Center, Hampton, Virginia 23665 (67)
- F. Dunn, Bioacoustics Research Laboratory, Department of Electrical Engineering, University of Illinois, Urbana, Illinois 61801 (1)
- Peter D. Edmonds, Bioengineering Research Center, SRI International, Menlo Park, California 94025 (1)
- James F. Greenleaf, Department of Physiology and Biophysics, Biodynamics Research Unit, Mayo Clinic/Mayo Foundation, Rochester, Minnesota 55901 (563)
- GILROY HARRISON, Department of Electronics and Electrical Engineering, The University, Glasgow, G12 8QQ, Scotland (137)
- JOSEPH HEISERMAN, Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305 (413)
- JOSEPH S. HEYMAN, National Aeronautics and Space Administration, Langley Research Center, Hampton, Virginia 23665 (67)
- B. P. HILDEBRAND,† Battelle Memorial Institute, Pacific Northwest Laboratories, Richland, Washington 99352 (533)

^{*} Present address: Battelle Northwest, Richland, Washington 99352.

[†] Present address: Spectron Development Laboratories, Inc., Costa Mesa, California 92626.

- J. G. MILLER, Department of Physics, Washington University, St. Louis, Missouri 63130 (29)
- MATTHEW O'DONNELL,* Department of Physics, Washington University, St. Louis, Missouri 63130 (29)
- Emmanuel P. Papadakis, Ford Motor Company, Manufacturing Processes Laboratory, Detroit, Michigan 48239 (237)
- JAMES A. ROONEY, Department of Physics and Astronomy, University of Maine, Orono, Maine 04473 (299)
- LEON J. Slutsky, Department of Chemistry, University of Washington, Seattle, Washington 98195 (179)
- G. I. A. Stegeman, † Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada (455)
- RICHARD M. WHITE, Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (495)

^{*} Present address: Signal Electronics Laboratory, Corporate Research and Development, General Electric Company, Schenectady, New York 12345.

[†] Present address: Optical Sciences Center, University of Arizona, Tucson, Arizona 85721.

FOREWORD

This volume, edited by Dr. Peter Edmonds, is the first of the Methods to be devoted to acoustics. Future volumes will deal with the more classical aspects of acoustics, a field that has been adopted by our colleagues in engineering as well.

Ultrasonics plays many roles, ranging from physical and bioengineering applications to the study of the fundamental properties of materials. Dr. Edmonds and his contributors cover these areas in a manner that should make this volume a definitive reference work on the subject. We expect that researchers in a given specialization will find much useful information and have their imaginations stimulated by going through the book as a whole.

L. MARTON

C. MARTON

PREFACE

This volume offers detailed and comprehensive treatments of a number of important topics in the broad field of ultrasonics. It is intended to serve the needs of graduate students and also of specialists in other fields who may desire an assessment of the capabilities of ultrasonics as a technique with the potential for solving specific problems.

Ultrasonics interfaces with many fields, including optics, low temperature and solid state physics, chemical kinetics, cavitation, viscoelasticity, lubrication, nondestructive evaluation, medical diagnostic imaging, signal processing, and materials processing. The authors of one or more of the following parts discuss these fields. However, other important topics have been omitted, e.g., ultrasonics in gaseous media, plasma- and magneto-acoustics, and phonon phenomena in general. Ultrasonic scattering in noncrystalline media proved to be insufficiently developed for treatment in this treatise. (Seekers of information on these topics should consult the excellent treatise "Physical Acoustics," edited by W. P. Mason and R. N. Thurston, published by Academic Press.)

I wish to thank all authors for their cooperation and hard work in writing and many supplementary tasks. The essential contributions made by the secretarial assistants to the authors and by their institutions are also acknowledged.

I am grateful to several anonymous reviewers of parts of this volume, whose excellent advice has been freely given and usually heeded. Valuable support provided by the management and staff of SRI International is acknowledged with thanks.

All who have contributed to this volume profoundly regret that one of its editors-in-chief, Dr. Ladislaus Marton, did not live to see its publication. In his absence, the functions of editor-in-chief have been admirably fulfilled by Mrs. Claire Marton.

PETER D. EDMONDS

METHODS OF EXPERIMENTAL PHYSICS

Editors-in-Chief L. Marton C. Marton

Volume 1. Classical Methods Edited by Immanuel Estermann

Volume 2. Electronic Methods. Second Edition (in two parts) *Edited by* E. Bleuler and R. O. Haxby

Volume 3. Molecular Physics, Second Edition (in two parts) *Edited by* Dudley Williams

Volume 4. Atomic and Electron Physics—Part A: Atomic Sources and Detectors, Part B: Free Atoms

Edited by Vernon W. Hughes and Howard L. Schultz

Volume 5. Nuclear Physics (in two parts)

Edited by Luke C. L. Yuan and Chien-Shiung Wu

Volume 6. Solid State Physics (in two parts) Edited by K. Lark-Horovitz and Vivian A. Johnson

Volume 7. Atomic and Electron Physics—Atomic Interactions (in two parts)

Edited by Benjamin Bederson and Wade L. Fite

Volume 8. Problems and Solutions for Students Edited by L. Marton and W. F. Hornyak

Volume 9. Plasma Physics (in two parts)

Edited by Hans R. Griem and Ralph H. Lovberg

Volume 10. Physical Principles of Far-Infrared Radiation By L. C. Robinson

Volume 11. Solid State Physics Edited by R. V. Coleman

Volume 12. Astrophysics—Part A: Optical and Infrared Edited by N. Carleton Part B: Radio Telescopes, Part C: Radio Observations Edited by M. L. Meeks

Volume 13. Spectroscopy (in two parts) Edited by Dudley Williams

Volume 14. Vacuum Physics and Technology *Edited by G. L. Weissler and R. W. Carlson*

Volume 15. Quantum Electronics (in two parts) *Edited by C. L. Tang*

Volume 16. Polymers (in three parts) *Edited by R. A. Fava*

Volume 17. Accelerators in Atomic Physics *Edited by P. Richard*

Volume 18. Fluid Dynamics (in two parts) *Edited by R. J. Emrich*

Volume 19. Ultrasonics Edited by Peter D. Edmonds

CONTENTS

Contributors	. xv
Foreword	. xvii
Preface	. xviii
List of Volumes in Treatise	. xix
Introduction: Physical Description of Ultrasonic Fields by Peter D. Edmonds and F. Dunn	
0.1. Development of Propagation Relations	. 3
0.2. Reflection and Refraction	. 9
0.3. Absorption	
0.4. Attenuation	. 27
1. Piezoelectric Transducers by Matthew O'Donnell, L. J. Busse, and J. G. Miller	
1.1. Introduction	. 29
1.2. Physical Principles of Piezoelectricity	. 34
1.2.3. Piezoelectric Generation and Detection of Ultrasound	_
1.3.1. Transmiss of Line Model	. 41 . 44

	1.4.	Design Considerations for Practical Devices	51
		1.4.1. Material Properties	51
		1.4.2. Practical Transducers	55
	1.5.	Concluding Remarks	65
2.		asonic Wave Velocity	
		Attenuation Measurements	
	•	M. A. Breazeale, John H. Cantrell, Jr.,	
	AND	JOSEPH S. HEYMAN	
	2.1.	Introduction	67
		2.1.1. Sources of Error	68
	2.2.	Systems for Making Measurements	76
		2.2.1. Optical Systems	76
		2.2.2. Pulse Systems	85
			111
	2.3.	Conclusion	133
3.	•	amic Viscosity Measurement	
	by C	Gilroy Harrison and A. John Barlow	
	3.1.	Introduction	38
	3.2.	Phenomenological Theory of Viscoelastic Liquids 1	39
		3.2.1. Plane Shear Wave Propagation in a	
			39
			41
		5.2.2. The croop response	43
		3.2.4. Data Reduction: Time-Temperature/	
			44
		Time-Tressure Superposition	•
	3.3.	Experimental Techniques	46
		<u>-</u>	46
			48
			59
		5,5,5,	66
			70
		127- 127- 127- 127- 127- 127- 127- 127-	
	3 /	Analysis and Interpretation of Results	72

CONTENTS	Vil

4. Ultrasonic Chemical Relaxation Spectrosco by Leon J. Slutsky	ору	
4.1. General and Historical Introduction 4.1.1. Relaxation Spectroscopy, Thermo		. 18
Preliminaries		. 18
4.1.2. Acoustic Relaxation		
4.2. Relaxation Amplitudes and the Magnitud		
Chemical Contribution to the Equation of 4.2.1. The Variation of Equilibrium Che		. 195
Composition with Temperature an	nd Pressure	. 195
4.2.2. Chemical Contributions to the He Coefficient of Thermal Expansion	• •	
Adiabatic Compressibility		198
4.2.3. The Evaluation of Γ in a Nonideal		
4.3. Linearized Rate Equations		207
4.3.1. Rate Laws, Elementary Steps,		
Reaction Mechanisms		
4.3.2. A Simple Example		
4.3.3. Coupled Reactions		
4.3.4. Redundant Reactions		
4.3.5. A More General Formulation		212
4.4. Coupling with Transport and Irreversible	Reactions	
4.4.1. Coupling between Reaction and D	iffusion	217
4.4.2. Reaction Far from Equilibrium .		220
4.5. Interpretative Problems		
4.5.1. A Straightforward Case		222
4.5.2. Ionization Reactions of p-Aminobo		
Kinetic Models		225
4.5.3. Polymers and Other Complex Syst	tems	229
5. Scattering in Polycrystalline Media by Emmanuel P. Papadakis5.1. Introduction		237
5.1.1. General Comments		237 239
5.1.2. Scope of the Part		239

	5.2.	Atten	uation Caused by Grain Scattering									240
			Theory of Grain Scattering									240
			Some Experimental Methods									257
			Experiments on Grain Scattering									267
		J. L .J.	Experiments on Grain Seattering	•	•	•	•	•	•	•	•	20,
	5.3.	Diffica	ulties to Be Encountered									291
			Anisotropy									291
			Specimens of Finite Width									294
			•									
	5.4.	Summ	ary			•		•		•	•	297
6.	Non	linear	Phenomena									
	by J	AMES	A. Rooney									
	6.0	Introd	uction									299
	0.0.	2111100		•	•	•	•	•	·	·	•	
	6.1.	Nonlir	near Propagation of Sound									299
		6.1.1.	Introduction to the Theory									300
		6.1.2.	Experimental Methods									301
		6.1.3.	Parametric Array	•								302
	<i>c</i> 2	D = 4!=4	ion Tonos									303
	6.2.		ion Force									
			Introduction to the Theory									303 305
			Experimental Methods									
			Calibration and Errors									309
		6.2.4.	Novel Applications and Technique	S	•	•	•	٠	•	•	•	310
	6.3	Acous	tic Manipulation of Objects									312
	0.5.		Introduction									312
			Theory									313
			Experimental Arrangements									314
			Applications and Special Effects .									316
		0.5.4.	Applications and Special Effects.		•	•	•	•	•	•	•	510
	6.4.	Acous	tic Streaming									319
			Introduction									319
			Theory									319
			Experimental Production of Acous									321
			Methods for Study of Acoustic Str							-0	-	1
			Patterns				_				_	324
			Novel Experimental Methods									326
			Use of Acoustic Streaming to Stud								•	220
			Structure and Function				-~ }	٠.٠				327

	•
ONTENTS	13

6.5.	Emul	sification and Aggregate Dispersal						32
	6.5.1.	Introduction						32
		Sonic Methods for Emulsification						32
	6.5.3.	Mechanisms and Efficiency of Emulsifi	ca	tio	n.			330
		Dispersal of Biological Cell Aggregates						33
6.6.	Atom	zation and Droplet Formation						333
	6.6.1.	Introduction						333
	6.6.2.	Methods for Ultrasonic Atomization .						333
	6.6.3.	Investigation of Mechanisms for						
		Ultrasonic Atomization						336
	6.6.4.	Droplet Production						338
6.7.	Acous	tic Agglomeration		•				340
	6.7.1.	Introduction						340
	6.7.2.	Experimental Approaches to the Study						
		of Agglomeration						340
	6.7.3.	Mechanisms Relevant to Agglomeration			٠	٠	٠	342
6.8.	Acous	tic Drying						342
	6.8.1.	Introduction						342
	6.8.2.	Experimental Methods						343
	6.8.3.	Possible Mechanisms of Acoustically						
		Assisted Drying						344
6.9.		onic Fatigue Testing						345
	6.9.1.	Introduction						345
	6.9.2.	Experimental Methods						345
	6.9.3.	Mechanisms of Fatigue	٠				•	347
6.10.		sonic Processing of Materials						
		. Introduction						
	6.10.2	2. Ultrasonic Welding						348
	6.10.3	3. Ultrasonic Machining						350
	6.10.4	Other Applications	•	•		•	•	352
6.11.	Concl	uding Remarks		•		•		352
		avitation						
by R	COBERT	E. Apfel						
7 1	Introdu	action						356

7.

	7.1.1. Nomenclature	356
	7.1.2. Types, Stages, and Effects of Acoustic Cavitation	358
7.2.	Cavitation Inception	360
	7.2.1. Cavitation Threshold Measurements	360
	7.2.2. Cavitation and Dirt	364
	7.2.3. Radiation-Induced Cavitation	366
	7.2.4. Unsolved Problems	368
	7.2.5. Concluding Remarks on Cavitation Thresholds	371
7.3.	Cavitation Dynamics	372
	7.3.1. General Considerations	372
	7.3.2. Gas Bubbles; Noncatastrophic Dynamics	375
	7.3.3. Vapor Bubble Dynamics	383
	7.3.4. Transient Cavitation	385
	7.3.5. Synthesis of Some of the Theoretical Results	398
7.4.	Acoustic Cavitation: Applications and Problems	403
	7.4.1. Introduction	403
	7.4.2. Promoting Cavitation: Activity Measures for	404
	and Applications of Cavitation	404 406
	This initially and revoluting the Enterto of Cavitation	
7.5.	Final Remarks	411
	ustic Measurements in Superfluid Helium Ioseph Heiserman	
by J	·	414
by J	Introduction	
by J	OSEPH HEISERMAN	414
by J 8.1.	Introduction	414 414
by J 8.1.	Introduction	414 414 417
by J 8.1.	Introduction	414 414 417 421
by J 8.1.	Introduction	414 414 417 421 421
by 3 8.1. 8.2.	Introduction	414 414 417 421 421 429
by 3 8.1. 8.2.	Introduction	414 414 417 421 421 429 434
by 3 8.1. 8.2.	Introduction	414 414 417 421 421 429 434 435