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Preface

The number of scientific workers who find Padé methods
useful in research seems to be growing rapidly. From the original
days of the classification of some rational fraction approximants
by Padé, no doubt influenced by Hermite at the Ecole Normale
Supérieure, and the first theorems of de Montessus, the
approximants were viewed as just another form of continued
fraction, which was a well established representation. The
importance of Padé Approximants as a systematic method of
extracting more information from power series expansions occurring
so frequently in theoretical physics was stressed by Baker and
Gammel in the early 1960's. There has been a steadily growing
cross-fertilisation of ideas between analysts, numerical analysts,
applied mathematicians, theoretical physicists, theoretical
chemists and electrical engineers since then, and this symposium
is an attempt to bring together people from these diverse
disciplines. The form of the collogquium was & school, primarily
instructional, and a conference. The colloquium was completed by
the presence of some experts who worked here for a period
including both school and conference. This formal framework
promoted discussions, appraisal of past work and future projects.

The topics discussed at this conference reflect current
progress. The impact of Nuttall's theorem on convergence in
measure and the work of the Saclay group on the perturbation
series in field theory are two important developments since the
publication (also by Academic Press) of "The Padé Approximant in
Theoretical Physics", edited by George Baker and John Gammel. For
the future, the remark in Prof. Gammel's introductory address,
about the difficulties of forming Padé Approximants in several
variables, may inspire the development that many of us feel is now

within reach.

vil



Vil PREFACE

The conference report is laid out in five sections. Th:
first section contains Prof. Gammel's introductory lecture and the
papers on the mathematical properties of Padé Approximants.
Second, there are the papers on numerical analysis and algorithms.
Third, are the papers on the application of Padé Approximants to
critical phenomena etc.. Fourth, come the applications in atomic,
nuclear and elementary particle physics and fifth are the papers
on circult synthesis and control. Of course, the work cannot be
divided into mutually exclusive sections, and many papers bear on
several aspects of applied mathematics in general. The introduc-
tory lectures given at the school are being published by the
Institute of Physics.

This, the conference book, is published by the camera ready
process, which allows rapid publication. For reasons associated
with this process, and with the requirement that the book be not
too long, contributors were asked to follow some very rigid and
seemingly arbitrary rules. Also, a strict length limitation was
imposed. I am most grateful to the authors who complied with the
instructions. The conference was directed by Prof. J. S. R.
Chisholm and Dr. A. K. Common, and Dr. A. K. Common undertook the
substantial task of being conference secretary. We are grateful
to the Science Research Council, who sponsored the Colloquium, for
funds which made the venture possible and to the Institute of
Physics under whose auspices the conference was held. I wish to
thank John Rennison for his encouragement during the editing,
and Profs. L. Fox, J. L. Gammel, J. A. Tjon and J. L. Basdevant
for academic advice. We are, as ever, grateful to our secretaries,
Sallie Wilkins and Sandra Bateman for their constant and

invaluable assistance.

P. R. Graves-Morris
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REVIEW OF TWO RECENT GENERALIZATIONS OF THE PADE APPROXIMANT

J. L. Gammel
(Los Alamos Scientific Laboratory, University of California

Los Alamos, New Mexico 87544, U. S. A.)

1. Quadratic Padé Approximants

The usual Padé approximant to a function £(z) 1is the ratio
of two polynomials, the numerator N of degree un and the
denominator D of degree m, defined by

Df - N =0 through zm+n . (1)
In other words, the approximant is the solution of a linear equa-
tion.

Recently, R. E. Shafer (1972) of the Lawrence Radiation
Laboratory, Livermore, California has suggested that approximants
which are the solution of higher order equations may be of value.

One sees that if polynomials P of degree p, Q of degree q,

and R of degree r are defined by

sz + Qf + R = 0 through Zp+q+r+l s (2)

and the (p,q,r) approximant is taken to be an exact root of the
quadratic equation, then there is a close analogy with ordinary
Padé'approximants. These analogies are the following.

First, the equations determining the coefficients in the
polynomials P, Q, and R are linear. The power series expansion

of f(z) is known; therefore, the power series expansion of

3



4 J. L. GAMMEL
fz(z) is known, and P, Q, and R, and therefore their coefficients
appear in Eq. (2) linearly. Because Eq. (2) is homogeneous, one
of the coefficients has to be chosen. Just as the coefficient of
z0 in the denominator of the ordinary‘Padé approximants is taken
to be unity, so the coefficient of z0 in P may be taken to be
unity. Then Eq. (2) yields p+ q+ 1 + 2 linear equations for
the remaining coefficients of Q and R.

Second, the (N, N, N) quadratic approximant is invariant

under homographic transformations

z = Aw/(1 + Bw) . (3)
Let g(w) = f(Aw/(1 + Bw)) , and let PN[f(z)] be the (N, N, N)
approximant to f(z). Invariance means that
P 8] = B[£(2)] : )
Aw

z:
1+Bw
The proof of this is most easily accomplished by observing that

if

)
(Pp + Py2 + -ov + P2 VE(2) + (qp + qpz + ... + quN)f(z)

+ (ro triz4 o+ erN) = 0 through 22N > (5)

then substituting z = Aw/(1 + Bw) and multiplying through by

(1+ Bw)N yields

a+ Bw)NP(li:w>g2(w) + 1+ BW)NQ<1i:w)g(W)
+ (1 + BW)NR(lﬁgw) = 0 through Wi+l s (6)

where the coefficients of gz, g, and 1 are polynomials of degree N.
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Since it is thought that invariance under homographic trans-
formations greatly expands the region of convergence of ordinary
[N/N] Padé approximants, so it may be expected that this invari-
ance also greatly expands the region of convergence of (N, N, N)
quadratic Padé approximants.

The third property is of importance in physics. This prop-
erty is that the (N, M, N) Padé approximants to a unitary f(z)
(one which satisfies f(z)f*(z) =1 for 2z real) are unitary.

The proof is pretty and proceeds as follows. By definition,

2

PE-+ Qf +R =0 , (7
2 *
and multiplying this by £ and using ff =1 |,
% %2 .
P+Qf +Rf =0 . (8)
Thus, if
.-~ /o-urm .
2P (9

is the (N, M, N) quadratic approximant to f, then

* _ -q-/ gz-APR

f = R (10$)

is the (N, ™, N) quadratic approximant to f* . (The equality
of the first and last indices is essential at this point: more
generally, if Eq. (9) gives the (L, M, N) quadratic approxi-

mant to f, Eq. (10) gives the (N, M, L) approximant to f*. The
choice of the opposite sign for the square root is necessitated

*
by the requirement f and f both approach unity as z + 0 .)



6 J. L. GAMMEL

Then clearly,

*
ff = 1 exactly. 11

Tt remains to discuss the numerical power of the quadratic
approximants, and this power is best illustrated by quadratic

approximants to

23 Z5
arc tan z = z - —§»+ B . (12)
To get a finite value for arc tan z at z = using ordinary

Padé approximants requires some trick such as squaring arc tan
z, forming the Padé approximants to the resulting function of

2z, and taking the square root again. Then one obtains

constant’
arc tan z = constant - — 3 as z >«
z
13)
This is wrong, because
!
onstant
arc tan z = constant —-E——éijL—- ,as z > ©
(14)
Shafer's (2, 1, 2) approximant,
arc tan x = 8z s (15)

2
3 4+1/25 +-§%5—

has the correct behavior at infinity, and it is much better
than anything obtained from ordinary Padé approximants using so
few terms.

One expects to see much research utilizing Shafer's idea.
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2. Approximants Based on Differential Eguations

One could go to cubic and quartic Padé approximants, or one
might try

E Lygrs =0 toorder L+M+N+1. (16)

L dz QM RN

Or one might even try second order differentisl equations, or in
fact any sort of non-linear differential equation which one
thinks appropriate.

The series related to the theory of critical phenomena
should be restudied with these new ideas of Shafer's in mind.
In fact, Joyce and Guttmann (1972), having come upon the idea of
using second order homogeneous equations in just this way before
me and independently of me, have already initiated such a program
of work. I shall describe their work in a moment.

Of importance to critical phenomena is the fact that if

n n-1
d f
4L, a4 £, . =0, (17)

P
dzn dzn-l

then the singular points Z, of f are the roots of P, If near a

singular point

f2—, (18)
(z -z)°
c
then
alz)
a=1-n- T (19)
dz | z=z

There will be much in these lectures sbout critical points z,



8 J. L. GAMMEL

and critical indices «a. George Baker's trick of taking the
logarithmic derivative is equivalent to the homogeneous first
order differential equation method.

The expected advantage of such methods is that singularities
more complicated than the one shown in Eq. (18) are in fact
accommodated exactly. Consider the sum of two such singulari-

ties,

r r
£ = I, 2 . (20)

(zl-z)O‘1 (22-2)0"2

Differentiate once,

ag 4T 1 a,T, 1

dz = z.-z o Y72 o : (21)
17 (zy-2)71 27 (z,2) 2

Equations (20) and (21) may be solved for (zl—z)-al and
(22--2)—(12 , (treating Pll(zl—z) as a constant, etc.), and
these results substituted into

2 al(a1+l)1’l

d°f _ 1 1
7 = +

dz (zl-z)2 (zl—z)Ot1 (zz-z)2 (22—2)0"2

az(a2+l)r2

(22)
and clearing away denominators one gets a second order linear
differential equation with polynomial coefficients.

Combinations of powers and logarithms and powers of
logarithms are accommodated: it is only a question of degree of
equation and degree of polynomial coefficients required to ac-

commodate any kind of singularities.



