Field Theory, the
Renormalization Group
and Critical Phenomena

DANIEL J. AMIT




4 ¢r7
M¢BRAW-HILL
INTERNATIONAL
BOOK COMPANY
New York

St. Louis

San Francisco
Auckland

Beirut

Bogotd
Diisseldorf
Johannesburg
Lisbon

London

Lucerne

Madrid

Mexico

Montreal

New Dethi
Panama

Paris

San Juan

Sdo Paulo
Singapore

Sydney

Tokyo .

. Toronto

DANIEL J. AMIT

Racah Institute of Physics
The Hebrew University of Jerusalem
Israel

Field Theory, the
Renormalization Group,
and Critical Phenomena |

et

n505487



This book was set in IBM Press Roman

British Library Cataloging in Publication Data

Amit, Daniel J
Field theory, the rénormalization group,
and critical phenomena.
(International series in pure and applied physics)
1. Critical point — Mathematical models
2. Phase transformations (Statistical physics)
~ Mathematical models 3. Field theory (Physics)
L. Title
536'.401 QC307 77-30555

ISBN 0-07-001575-9

FIELD THEORY, THE RENORMALIZATION GROUP, AND CRITICAL PHENOMENA

Copyright © 1978 by McGraw-Hill, Inc. All rights reserved.

No part of this publication may be reproduced,

stored in a retrieval system, or transmitted, in any form or by any
means, electronics, mechanics, photocopying, recording aor otherwise,
without the prior written permission of the publisher.
12345WIM. 80798

Printed and bound in Great Britain



PREFACE

The idea to write this book was conceived during a_graduate course in field
theory which I taught at the Hebrew University in Jerusalem 1974--75. The
course was a collaboration with Dr. J. Katz. He presented the canonical theory
of fields; my part was to show that the approach actually works as a practical
tool. ' ‘

By 1973 Wilson’s pioneering work, showing that the renormalization
group in field theory is a general technique for dealing with systems with an
infinite number of degrees of freedom, had been fully integrated into the
beautiful framework developed previously by Symanzik, Callan, 't Hooft etc.
This framework, beyond being aesthetically artractive, proved also, through its
unifying power, to be a source of new results. There was then a general fceling
that the field was mature and integrated enough to be summarized. This feeling
gave rise to the article of Brézin, e Guillou and Zinn-Justin in Volume VI of the
series of Domb and Green.f

With a background in statistical physics the transition to the world of

1See list of General Sources, page xv.
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concepts and experience of field theory has proven rather difficult. This
explains, perhaps, why the number of workers in statistical physics to adopt the
new faith has been increasing rather slowly. Despite the fact that the benefit of
crossing the potential barrier is quite significant. Most work in critical phe-
nomena using the techniques of field theory has been done by field theorists —
usually oriented towards problems of elementary particles — who learnt the
problems facing statistical physics.in this domain. In fact, Wilson’s original foray
into this field had been motivated by the idea that the domain of critical
phenomena, formulated as questions in field theory, can serve as a laboratory in
which ideas in field theory proper can be tested.
The present book was written as a description of the process undergone by
a statistical physicist in converting to the very clegant and efficient new faith,
with the intention of demystifying the formalism for many other statistical
physicists active in’the field, or in becoming such. In brief, one aspect was to try
another instance of Kadanoff and Baym,} who so successfully introduced in
1962 the techniques developed by Schwinger, Matsubara, Martin etc. to the
many-body problem. This explains, as well as apologizes for, the fact that the
number of physical phenomena which are described, and the amount of dis-
cussion of the intuitive content, of the results is very limited. These are amply
discussed in Toulouse and Pfeuty, Ma, and in Vol. VI of DG. It also accounts for
the fact that very little effort has been taken to make the list of references either
complete or to give due credits of priority; these can be found in the relevant
reviews. On the other hand an effort has been made to stay away from the
attractions of rigor, and thus of lengthy proofs. Instead, I have tried to
emphasize the other “phenomenology”, which resides within the theoretical
framework. This is the phenomenology of graphs, of power-counting, of the role
of the number of space dimensions, of internal symmetry, of symmetry factors,
of ultraviolet vs. infrared, etc.
But it seems to me that there is much more at stake than-a gentle
“introduction of the methods of field theory to statistical physicists. The impact
of Wilson’s work has already been called a revolution — and justifiably so. The
ushering of a new and powerful insight has by now totally shifted the language,
moved the frontiers and revitalized not only the field ‘of critical phenomena —
from maguetism, and spin-glasses to polymers to turbulence — but the field of
fundamental particle physics as well. The great impetus experienced by the
" descriptions of nature in terms of gauge fields can hardly be imagined without
the discovery of asymptotic freedom. This started a chain of events on whose
trail one can discern possibilities such as unifications of theories of different
interactions (a canonical dream in physics), quantization of gravity, confinement
of quarks etc. —all of which seemed beyond the reach of our conceptual
framework only a couple of years ago. '

tL.P. Kadanoff and G. Baym, Quantum Statistical Mechanics (W. A.
Benjamin, N.Y., 1962).
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This ambitious new program, of attacking the most difficult problems in
statistical physics as well as in particle physics using one single set of concepts, is
far from completion. In the process the dialectical cross-fertilization of the two
fields is still very much at work. To mention just a couple of examples one can
cite the work of Migdal and Polyakovi on extending the mechanism which
prevents phase-transitions in systems with a continuous, non-abelian global
symmetry in two dimensions to systems with non-abelian local gauge symmetry
in four dimensions, and from there to confinement. Likewise, the attempts to
calculate the spectrum of the hadrons draws much from the experience in
statistical physics once the field theory is placed on a lattice, as was proposed by
Wilson,i and ideas of solid state physics become useful. Looking in the
opposite' direction one has learned from field theory how to obtain a systematic
expansion of thermodynamic quantitie near two dimensions, as well as the
recent extension of Lypatov's work by Brézin, Le Guillou and Zinn-Justin§
which provides an understanding of the nature of the mysterious series in the
number of dimensions in critical phenomena, and thus a tool for an improved
exploitation of these series. :

All the exciting subjects mentioned above are not treated in the book.
They are introduced only to support my feeling that it may still be useful for
field theorists to see how the ideas, developed in their domain, operate in the
territory in which they enjoyed their most impressive successes. To them the
level of field theoretic technology may seem elementary but, I hope, the context
may prove stimulating., It is with this in mind that I tried to intermingle the
vocabularies of the two fields wherever possible. Anyone familiar with standard
texts in field theory can surely skip Chapters 3 to 5.

" To conclude the comments on the contents and the intentions of the book
I should add that [ deliberately refrained from including the most general cases
of critical phenomena which can be treated, nor did 1 try to describe the vast
culture of applications to different systems. The treatment of time-dependent
problems was also left out. This was done with the view that once the mechanics
of the field theoretic formulation of the renormalization group are successtully
communicated by a detailed study of a few simple models, the reader will 1ind
the literature of reviews and original articles accessible. Many excrcises are
included to provide the reader with a way.to test that his sense of understanding
is not merely superficial, or restricted to the model discussed in the text.

As far as my indebtednesses go+l owe all [ know in this field to Edouard
Brézin and to Jean Zinn-Justin. In fact, it would not be unreasonable to consider
this bocok a poor man’s version of their review article in the series of Domb and
Green. This gigantic debt should by no means implicate them in any of the taults

TA. A. Migdal, ZE T.F., 69 1457 (1975): A. M. Polvakov. Physics Letters,
595, 79 (1975).
1K. G. Wilson, Physical Review, D10, 2445 (1974).

qE. Brézin, J. C. Le Guillou and J. Zinn-Justin. “Perturbation Theory at
Large Order,” Physical Review D18, 1544 and 1555 (1977).

5505487



xiv  PREFACE

of the book, be they of substance or of presentation. The bulk of the manuscript
was written when I spent an unforgettable year at Saclay. During this year 1
taught this course a second time as a graduate course in theoretical physics at the
University of Paris at Orsay. It was during that year that the final form of the
manuscript crystatlized, and where I learned that most of the material can be
covered in about fifty course hours. Teaching this course a second time was
indispensible and for the opportunity [ am grateful to Prof. Bernard Jancovici
and to the audience. Beside the hospitality I enjoyed at Saclay, I had many
enlightening discussions with Cyrano DeDominicis, with Luca Peliti and with
Michael Mirkowich. The latter also.suffered through many of the exercises and
made many valuable comments on an early version of the manuscript. Back in
Jerusalem, Yadin Goldschmidt and Hadassa Jacobson made many comments on
the manuscript — reducing the number of errors and clarifying many points.
Finally, the enthusiastic assistance extended to me by the secretarial staff
at Saclay, in particular that of Mme. Francine Lefevre and Mme. Madeleine
Porneuf went far beyond their professional duties, and its value cannot be
exaggerated. :
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1

PERTINENT CONCEPTS AND IDEAS IN THE
THEORY OF CRITICAL PHENOMENA

1-1 DESCRIPTION OF CRITICAL PHENOMENA

There is a rich variety of systems which exhibit second orde. phése transitions.
By a second order transition we mean one in which the system approaches,
continuously, a state at which the scale of correlations becomes unbounded. In
the language of field theory, one is approaching a zero mass theory. At such
points the first derivatives of the free energy — like entropy, volume, magnetiza-
tion, etc. — behave continuously. The name phase transition stems probably
from the fact that often there is a change in symmetry occurrirfg at the same
point — as, for example, in the magnetic cases, or in changes of crystal struc-
tures, superconductivity, superfluidity, etc. But the classic second order transi-
tion — that of the critical point of the gas—liquid transition — involves no
symmetry change at all. )
One notices the large scale correlations by observing, for example, critical
opalescence at the gas—liquid critical point. The dramatic increase in the scatter-
ing of light is a direct result of the fact that regions of the size of microns — the
wavelength of visible light — are fluctuating coherently. The divergence of the
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susceptibility in ferromagnets reflects the longrange nature of correlations,
since, as we shall see, the susceptibility is given by the integral of the correlation
function (see Sec. 2-5).

Various physical quantities either vanish or diverge as one approaches the
transition point. We have mentioned already the correlation length and magnetic
susceptibility. Thus, if the correlation function of the fluctuating quantity at
two different pointsis

{8s(x)6s(0) ) . exp(—x/§) (1-1)

K

then we define the asymptotic behaviour of the correlation length &, as a
function of the temperature by:

fAT-T)™  T>T,

-1y 1< T,

(1-2)

For magnets s(x) is the local magnetic moment, and 8s is its value relative to its
average. For antiferromagnets s(x) is the local sum of spins added with a positive
sign if on one lattice, and with a negative sign if on the other. For a hquld s(x)is .
the difference between the local density at x and the mean density at the critical
point. For systems like superfluids the fluctuating field is not directly abserv-
able. It is a complex order parameter. The behaviour of the correlation length
can be deduced using Josephson’s' relation which states that the exponent of
the superfluid density is equal tov. :

But despite the great variety of physical systems one can use a unified
language, based on some order-parameter field, whose identification may at
times require much ingenuity. This order parameter may have one component,
as in the Ising model, or 3 as in the Heisenberg model, or perhaps 18 as in the
He? superfluid transition.

Within this unified language we define a susceptibility

. GIT-T I T>T,
x~ t (1-3)
CIAT— T, 17 T<T,

x is the response of the system — the.change in the average order parameter —
when an infinitesimal external field which couples linearly to the order param-
eter, is applied.

Again there may be a variety of situations. In the liquid x is the com-
pressibility; in the antiferromagnet it is the response to a staggered field; in a
superfluid it is not & physical quantity; in a Heisenberg system there may be a
susceptibility tensor, with longitudinal and transverse components, etc.

If one is right at the critical temperature, T =T, then the correlation
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function generally decreases as a power, Thus we define

(6s(x)8s(0)) ~- |x| (@72 (14)
. xl—= =
where d is the number of space dimensions. v
The specific heat is described asymptotically by:

oo ANT=TeI® T>T,

, (1-5)

A NT-T ™ Tr<T,
where @ =0 implies.at times a discontinuity, and more recently a logarithmic
behaviour. '

In many systems one can measure a coexistence curve, the term being
borrowed from the liquid—gas system, where it describes the thermodynamic
subspace in which gas and liquid coexist in equilibrium. In a magnetic system it
is the behaviour of the magnetization as a function of temperature at zero
external field. One uses the magnetic notation, writing

M~(T. - Ty (1-6)

Another exponent is defiped by considering the approach to the transition
at T = T, but with external field, # # 0. The magnetization can be described as

M~hn'l® (1-7)

Similarly, this will describe the approach to the liquid critical point at T=T,
but the pressure p £ p,.

The various quantities and exponents have to be interpreted anew for
every system. We have used the simplest illustrations but the concepts have been
applied successfully to a whole variety of transitions — including polymers,
percolation problem, liquid crystals, helical magnets, ferroelectrics, etc., . . . and
four pages of etc., ... ?

1.2 SCALING AND HOMOGENEITY

The idea of scaling, as first conjectured by Widom,® consists of writing the
asymptotic, sometimes called singular, part of the free energy, or the equation of
state as a homogeneous function of the variables. For example, the equation of
state describes a relation between the magnetization, the temperature and the
magnetic field. In general we could write:

h=MCfM,t) t=|T-T,| (1-8)
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Instead, Widom proposed that f should depend on a single variable. Thus we can
write

b= MO f(t/M"IF) (1-9)

This type of relation seemed to be obeyed quite well experimentally. It was also
verified in various approximations and models, such as the mean-field approxi-
mations, the droplet model, and the spherical model. Similarly, one writes for
the singular part of the free energy

F(t,h) = 2~ %p(tfh*IF®)  (1-10)
and for the correlation function, at M =h= 0, for example,

G(r,))=1r1"@"2*Wg(r/t™)  (1-11)

From these homogeneous relations one can derive what are called “scaling
laws,” or relations among exponents. Thus, one finds easily that:

B+y=2-—a
266 -y=2-a
Yy=u(2—-n)

cwd=2-a  (1-12)

Furthermore, one finds that the exponents are symmetriéal about the transition.
Consequently, if scaling really holds, one needs to know only two exponents in
order to know them all. These relations are exactly obeyed by the two-
dimensional Ising model, and by the spherical model. Both experimental results
and numerical studies of various models support them strongly. The idea of
scaling was injected with a very creative intuitive insight by Kadanoff* and
formulated by Patashinskii and Pokrovskii.* The phenomenological aspect of
this idea has been developed extensively by Fisher,® and brought to its logical
and aesthetic extreme by Griffiths.”

1-3 COMPARISON OF VARIOUS RESULTS FOR CRITICAL EXPONENTS

In several cases self-consistent approximations were developed for the descrip-
tion of critical phenomena. For example, the Van der Waals equation of state
was devised for the gas—liquid transition. The Weiss theory was developed for
ferromagnetism, and the Curie—Weiss theory for antiferromagnetism, etc.
Landau, in 1937, unified all theories of this type under what has since been called
Landau theory.® Basically, all these theories assume that the interacting system
can be replaced by a system in an external field, if only that field is properly
chosen. A non-interacting system in an external field can be exactly solved, and



