s S

(3}

SOFTWARE DESIGN

} FOR
MICROCOMPUTERS

CAROL ANNE OGDIN

Prentice-Hall, Inc., Englewood Cliffs, N.J. 07632
SroSt74

0505676

™)
23

3. }fg 2,
‘?C/

/

Library of Congress Cataloging in Publi Data

OGDIN, CAROL ANN, (date)

Soft: :duign for mi puters.

Includes index,

1. Mi p P i L. Title.
QA76.6038 001.6'42 78-5801
1SBN 0-13-821744-0

ISBN 0-13-821801-3 pbk.

o E(22/0]
©1978 by Prentice-Hall, Inc., Englewood Cliffs, N.J. 07632) |

All rights reserveg. No part of this book may be.reproduced in any form
or by any means without permission in writing from the publisher.

Printed in the United States of America

10987654321

oy

PRENTICE-HALL INT‘ERNATIONAL,'INC., London
PRENTICE-HALL OF AUSTRALIAPTY. LIMITED, Sydney
PRENTICE-HALL OF CANADA, LTD., Toronto '

~ PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi

PRENTICE-HALL OF JAPAN, INC., Tokyo
PRENTICE-HALL OF SOUTHEAST-ASIA PTE. LTD., Singapore
WHITEHALL BOOKS LIMITED, Wellington, New Zealand

-~

P f?faée

“Software Design for Microcomputers” distills much of the recent experience
gained by trial-and-error in the software industry. From this sorting of the best of
available techniques, I hope that you, the reader, will be spared some of the same
mistakes others have made. I made the assumption that you are about to embark
on a software design task (probably on a micro, but the principles work for any
common digital computer), and that you want to do the best job possible. I have
tried to select the best methods from all of the available literature and meld them

‘into a cohesive methodology that expenenced dngnal designers and engineers can

apply with little fear of failure.

~ There are many books on programming—but few on the subject of sof}ware
design. And, so far as I know, none of the available books assume, ‘that you are an
intelligent, rational designer with some experience that serves as a valuable starting
place. Like its companion, MICROCOMPUTER DESIGN, this book has already

been “‘fiéld-tested.”” About two-thirds of shis manuscript originally appeared in ‘

EDN magazine’s June 5, 1977, issue under the title ‘“‘Software Design Course.”’ In
recognition, that issue was accorded the American Business Press® Jesse Neale
Award as the best contributed series of 1977, '

The purpose of SOFTWARE DESIGN is’ not merely to reprmt a series of
articles, but to add to the basis of knowledge you already have. You may be new
to software, having learned the nidiments while reading MICROCOMPUTER
DESIGN, or you may be experienced in digital design with a smattering of pro-
gramming. bacl;ground or you may have last brushed against a computer in a
FORT _course in college. ‘No matter what background you bring to it, “Soft-

ware Desxgn” wxll show you a step-by-step approach to the desngn, implementation '

x Preface

and checkout of reliable and valuable software. The book is arranged in a pro-
gression of thirteen chapters, from fundamentals review to sophisticated detail.

Chapter 1 reviews the basis for software and explodes some myths. Software
design is just like hardware design—no more difficult, no easier. The same design
disciplines that are applied to digital systems in TTL or CMOS can be applied to
programs written for a computer. The emphasis for the entire book is established
with the twin premises that: 1. Literate man of the late 20th Century must know
how to program; and 2. Programming is a cerebral exercise conducted by intelli-
gent people.

Chapter 2 describes in detail the basic steps in successful software design. By
intentionally drawing the distinction between designing, programming, and coding,
we separate a formerly confused morass into a logical sequence. Then we show
the economic consequences of doing a poor design job and expectmg to recover
during the debugging phase of the project.:

Chapter 3 begins *‘Software Design’s’’ radical departure from most introduc-
tory programming texts. Instead of showing how to write code, this chapter shows
how to design data structures. This is one of the major keys to successful soft-
ware. A set of possible variants on data structuring are shown, and some empirical
rules for describing all possible data structures are outlined.

In Chapter 4, the logical ‘“dual’’ of data structures—procedures—are described
in equivalent detail. Parallels are constructed between data structures and pro-
cedure structures, and the power of switching from one to the other during design
is emphasized.

In Chapter 5 we begin to apply these techmques to the requlrements that are
common to both hardware and software. By recording each step, from concept of
need to final algorithm, this chapter shows how experienced designers work.

Alternative ways to describe the algorithms for implementation as a computer
program are shown in Chapter 6. First, flowcharts are debunked. Next, several
alternative ways of describing software during the design process are presented.
Choices among these different documentation and design tools are also explained. -

Chapter 7 may seem out of place in a book on software design, yet it may be
the most important part of the entire work. Documentation is done before a pro-
gram is written, not after. Chapter 7 shows a simple way to document software
(and hardware) designs in a way that encourages revisions during the design stages
and discourages them after the design has been settled.

Chapter 8 introduces one of the important parts of programmmg coding. We
have elected to use the BASIC language only because it is so easy to read. Al--
though a powerful language, it is not the only tool in a programmer’s kit. The .
. rudimentary statements in the BASIC language are revealed in sufficient detail for
subsequent chapters to show actual program implementations. _

Coding a properly designed program into BASIC and onto the computer is the
subject of Chapter 9. The steps, mcorporatmg the ‘concepts of Chapters 2 through
8, are outlined in a series of illustrations, each one a more elaborate design of the
_one preceding. Finally, an actual computer print-out shows all the actions taken i in

Preface xi

the testing and debugging of a simple program. Coincidentally, the application
selected is unusual: the plotting of an arbitrary funcuon on the printer or terminal
of the computer.

Chapter 10 deals with the tricks and techniques of the inexact art of testing
and debugging computer programs. Like design, testing is a mental activity. Most
practical programs cannot be tested exhaustively, so some intelligence must be
applied by the test-case designer to inspire confidence in the resulting software
product.

Chapter 11 deals with several other popular languages. The discussion shows
the extensions provided in advanced versions of BASIC, then illustrates programs
in FORTRAN, COBOL, APL, PASCAL and Assembly Language. In each case,
the advantages and disadvantages of each language are provided so you can select
the best language for your own programming needs.

The special requirements of real-time programs on minis and micros are treated
in detail in Chapter 12. Since most microprocessor applications involve real-time,
and real-time is the bane of programming reliability, compromises are essential.
Chapter 12 shows how to judge those compromises and how to design highly
reliable real-time software.

Systems software, programs that aid program development, are discussed in
the final chapter of the book. Monitors, supervisors and operating systems are
described, as well as some of the considerations in their selection and use. Finally,
principles behind language translators and program loaders are discussed, so you
can understand manufacturer’s software literature,

These chapters describe techniques I use every day and have taught to many
other people. If you follow them carefully, you will be able to produce reliable,
useful and valuable programs. Furthermore, you will have a distinct advantage
over most ‘“‘experienced’’ programmers who resist learning these new techniques -
because they believe they know all there is to ever know about programming,
designing and coding. 1 do not believe that I will ever know it all—but these few
techniques keep me out of the most serious kinds of troubles to whlch
programmers seem heir.

CAROL ANNE OGDIN

Preface ix
1 What Is Software? 1
2 Procedures and Data 9
3 Data Structures 2!
4 Procedure Structures 39
5 Algorithm Design 50
6 Program Notations 67
7 Program Documentdtion 85
8 Introduction to BASIC 96
9 Writing and Runnihg a BASIC Program 119
10 Tesfing and Debugging Techniques 132
11 Other Programming Languages 146
12 Real-time Progrémming - 164
13 Systems Software 179
Index 191

- Contents'

vl

1

What Is Software?

Software is no longer an avoidable subject. Although computers have been acces-
sible to engineers and system designers for over 30 years, many of us have avoided
learning the new skills required. And, of course, many of the computer experts have
made a simple topic complex. Actually, as you will discover in this design course,
software is not at all difficult to learn. Much of the knowledge you already have can
be redirected toward the new implications of computer programs; learning how to
program need not be a painful experience.

This design course will be an unconventxonal treatment of software. You will not
find another boring introduction to bmary arlthmetg,c, if you have ever designed a
digital circuit you know that already. You will not find another basic introduction to
elementary computers; as an intelligent, well-read designer, you obviously already
have these ideas firmly grasped. In this design course we are going to concentrate cn
the practical steps you must take in order to understand use, and create software in
today’s electronic envnronment .

What Is Software? . ' o R

Software is more than a collection of holes punched m cards or paper tape. It
includes the whole gamut of nonelectronic support to computers. When we talk of
software, we mean the computer programs (in all their various forms), the instruc-
tions for use and the user’s manuals, and the necessary design documentation.

If we look at the computer itself, we can see it, feel it, even squeeze it. This
part of the system is called the hardware. But a general-purpose computer is a use-

9

5505676

2 What is Software?

less lump of electronics until and unless it is provided with a program in the com-
puter’s store. The physical storage medium is part of the hardware; the particular
binary state of each individual storage element is not something we can generally
feel, see, or squeeze. This particular combination of binary states contains the
program (and probably some data). Since we cannot physically handle it, we call
it software.

There are three different kinds of software:

1. Applications programs. Software that is especially written to solve some
particular problem.

2. Systems programs. Software that usually comes with the computer from the
manufacturer and is designed to make the creation of applications pro-
grams easier.

3. Documentation. Software that shows us how to use the programs and how
to modify them for special needs,

Sometimes, only the second kind of software (system programs) are considered to
be “‘software.”” According to accepted industry standards, however, if you take

The Gutenburg Era

To be a good progr‘aihiner todaiy is as much a privilege as it was to be a
literate man in the sixteenth century.

Andrei ErSth

Microprocessors have brought us all into the Gutenburg era of comput-
ing. It is almost as inexpensive to reproduce and distribute a process as it is
to reproduce and distribute information. Just as Gutenburg’s invention al-
lowed the inexpensive reproduction and distribution of information in the
form of printed and bound books, the microcomputer will have an astound—
ing impact on society in the next 25 years. :

The effect on electronic designers will be no less astoutiding. No l‘onger
need we concern ourselves with the management of vast armies of monks,
secretly enscribing illuminated manuscripts of COBOL and FORTRAN, ~
each with their own individualities and idiosyncracies. Instéad, we ¢an look
forward to the creation of .an elite’ ‘cadre of software authots who create the

" 'major ‘works and o tﬁe e‘vent\ial acqmsmon of programmmg s’k:lls by the
general populace. . -
S therate men* t&[dte twenmt!menhuy must know hﬁw to pwgram, :

What is Software? 3

away the physical computer from a system, what you have left is galled the soft-
ware. R

You will notice an emphasis on including documentation in the definition of
software. That is intentional. Throughout this design course you will find a recur-
ring theme of documentation. Good programs are chracterized by good docu-
mentation. Furthermore, good documentation is written before the program itself
is written. All too often when we think of software we imagine only the computer
program as it resides in the computer’s storage medium. That is the hallmark of
the novice. The experienced computer user looks to the documentation, just as the
experienced electronics designer looks beyond the schematic to the supporting
documents. A good design document completely explains what the program does.
The program is a formal restatement of the design in binary digits that the com-

puter can understand.
?

SQItware Environments

Software exists in relation to some computer (or computers). It is important to
note the differences among kinds of computers and the various environments in
which software exists. The concepts of programming and software design are the
same, regardless of the software’s environment. However, you cannot effectively
design without having some awareness of the various environments you may be
called upon to exploit.

Certamly, today’s designer is faced with the novel opportunity of the micro-
processor and microcomputer. These devices provide the greatest impetus to learn-
ing about software only because their application domain is so pervasive. To
ignore software (and therefore to ignore micros) is as foolhardy as trying to ignore
integrated circuits might have been a few years ago, or transistors a decade before
that. Micros represent an essentially ‘‘raw’’ computing capacity that is unadorned
by much additional software to make using them easy. However, if history repéats
itself, more and more systems programs will become available, making the use of
- micros easier and easier. That, in turn, will drive costs down even more and will

encourage more people to use them. With more users, there will be more incentive
for the development of more and better systems programs that will, of course, en-
courage even more use of micros. , :
The history of the micro is already paralleling the recent history of the mini-
computer, which was originally introduced as a relatively low-cost system com-
ponent (priced around $25,000; then, computers cost over $250,000). The mini was
" also without much software. However, today’s minicomputers are augmented with
a wide range of software alternatives from the simplest (not unlike the common
microcomputer support available) to the most complex. Some minicomputers even
have whole systems programs called operating systems that allow multiple simul- -
taneous users of the same computer,

4 Whdtis Software?

The large-scale computers of today are generally used to:handle problems that
require access to large files of data or massive computation. The demise of the
large-scale computer has been predicted for years, but it is unlikely. The central-
ization of data files for an organization requires a single computer complex. And
many of the problems that require high-speed computational ability need that
capability for only a few seconds each day. A large centralized computer allows
many, many users who have similar kinds of problems to share a single resource.

There are some subtle details in the design of software for these different en-
vironments, but the techniques are almost the same throughout. For example, if
you write a program for a microcomputer, you will have to descend into a morass
of details to handle the individual input/output circuits. On a minicomputer you
will be able to avoid some of this detail by using some of the features of the sys-
tems programs provided by the manufacturer. On a large-scale computer you will
probably be prevented from being able to get involved in the details of input/out-
put programming. At the microcomputer end of the spectrum there is. more
‘“‘raw’’ input/output capability, but at the large-scale computer end you will find
the process of implementing a program significantly easier.

The environment in which software gets written also includes other software.
When you write a program, you will be using other programs to help you do your
work. Instead of h:aving to write programs in the one’s and zero’s of binary, you
can write them in a much more readable form; a system program is used to
“‘translate’’ your readable form into the computer’s required binary form. In fact,
as you begin to adopt the use of a large-scale computer (or, to a lesser extent, the
minicomputer) you will find that you will spend less time understanding the
underlying computer and more time learning about the systems programs provided
as the software environment of that computer system. In this desngn course you
will learn how to understand all of the system’s software.

Uses of Computers

If you look around you will find a wealth of opportunities to exploit computer
technology in the electronics industry. In this design course we will stay away
from the traditional management-oriented and administrative uses of computers.
Our examples will be drawn mostly from the applications for microcomputers and
minicomputers with which you will most likely .become involved. However, there
"are numerous other uses you might dxscover, even 1f you don’t design around
micros and minis. .

For example, have you ever had to prepare a proposal for a large project?
(There are two kinds of engineers: those who have and those who will.) How do
you price out different alternatives for a project with lots of people and only a
certain amount of time? How do you try out various alternatives, for example,
making certain subsystems and buying others? To try out all of the alternatives by
. using a desk calculator can be terribly time-consuming. This is a natural applica-

What is Software? §

tion for a computer. You can use the organization’s data processing department’s
computer, or an available minicomputer, or even a terminal to a remote time-
sharing system. You can design and write a small program that does all of the
routine math and prints out an annotated result; then, by changing the data you
can produce different reports that can be compared-for effectiveness.’

Prewritten (canned) programs can be leased or bought. These programs can be
used for project scheduling and analog circuit design and for solving simultaneous
equations and so on. You don’t necessarily have to be able to program in order to
buy and use these programs, but you do have to know enough about software to
be able to evaluate what you are buying.

There are even more novel applications for your new-found software skill.
Have you ever needed a generator of complex digital or analog signal sequences?
The experienced computer nser plucks a common computer off the shelf, pro-
grams it to suit, and generates an easily changed signal sequence. It is easiest to-
visualize if your application is digital, but computers can also be used to synthe-
size analog signals. And"a derivative application is the use of a computer to simu-
late some unavailable piece of more complex equipment. If you are designing a -
~ subsystem of an aircraft instrument panel, you can actually create all of the com-

plex interacting signals that arrive from the various sensors to simulate an actual
flight. This can be used in system testing and for important demonstrations.

The list of potential computer applications that are open to the knowledgeable
user of software is virtually endless. But the most important use of your software
skill is in the planning of your own career. The designer of good software is a
recognized asset in almost any organization. Because of your new abilities, you
may find yourself given more responsibility and presented with more interesting
technical challenges. And in today’s world, more and more problems are going to
require the systems approach that is inherent in good software design; learning.
software has more to offer than just a new bag of tricks. It may be a significant
step in your professional advancement.

What Is Programmlng':’

Contrary to all the popular books on the subject, programming is not the writ-
ing of cryptic statements in FORTRAN, BASIC, or COBOL. Programming is the
act of designing a specialized sequence of instructions for a fast and faithful clerk
to carry out endlessly (and mindlessly). If you imagine a computer as an unerring
clerk to whom you must provide detailed and complete instructions to carry out
some task, you will begin to appreciate what has to be done in the authorship of a
program. At the very minimum, you have to know more about the intended
application than you would have to know if you were to do all the work yourself,
The computer cannot fill in its own gaps in knowledge; it can only follow the
steps in the program.

6 What is Software?

The first step in programming a computer is to understand what has to be
done. It is at this point that most computer program designs fail. A clear and
complete description of the intent and requirements of the software must be docu-
mented before”any design is attempted. If you design any system, whether hard-
ware or software, without understanding the needs, you are doomed to having to
tear it all down and redesign over and over again. After we have introduced some
of the basic concepts you need to know, we will show you how to document the
requirements in a clear and consistent way. /

The second step in programming is to design the software systcm that will be
required. This generally starts by breaking the requirements down into groups,
each individual group representing a semi-independent mod".;le Each module is
further broken down into individual units until a level of detall is reached at
which each unit can be thoroughly understood and completely desi ed. These
first two steps demand a s1gmf1cant discipline to ngorously document each impor-
tant decision.

The third step in programming is to unplement the program The design is
manually translated from the documented form into a form that is acceptable to
the computer; this form is called a programming language. This phase is called
coding, and it is the phase at which most people (erroneously) begin.

The next step in programming is generally semiautomatic and is called transia- ‘
tion. Your program (in an appropriate language) is translated into an equivalent
binary form that the computer will be able to execute. This translation is done
under the aegis of a systems program called an assembler or a compiler; any
errors you-may have made in writing in the programming language are detected
and reported to you by this systems software.

After you have an understood, designed, coded, and translated program, you
must test it. After finding one or more faults, you must debug it to find what has
to be changed in order to make it function correctly. Testing is an art of its own,
as is debugging. Chapter 10 is devoted to these two topics. Testing and debugging
are generally done repeatedly until the program achieves a satisfactory level of
quality of behavior. The objective of testing is to find the errors that may have
been made in the entire process; it should not be the point at which you attempt
to make up for your lack of original understanding of the ffoblem that you are
-trymg to solve.

-All too often neophyte programmers see the actual coded program as the only
necessary object of the programming exercise. Experienced programmers know
that there are many preliminary steps that must be taken. The experience level of
programmers can be judged by finding out how soon they begin writing code. for
the computer: The novice begins almost immediately and assumes this is the right
thing to do. The more experienced programmer does a lot of preliminary paper
work and produces a series of design documents; actual coding doesn’t begin until
much later. In general, the earlier the coding is done the poorer it will be because
at this stage the problem is not usually well understood.

What i§ Software? 7

The novice programmer typically grasps any ‘‘corner’’ of the intended applica-
tion (often the one he ‘‘understands™ best) and begins to chop away at it. If there
is to be a terminal, he may start to create part of a program to read in data from
that terminal. It doesn’t occur to him that he doesn’t know what to do with that
data once it is in; it doesn’t occur to him that this may not be the right way to
cope with the terminal.

The experienced programmer knows that quickly rushing off to write code will
produce useless software. He first sets out to understand the problem, designs the
software, specifies the steps required in the solution, and finally “establishes the
requirements of each module and how they are to be fitted together. Eventually,
he will achieve enough of an understanding of the entire system (and its partial -
evolution at some stage) to be able to specify the characteristics of the various
components of the entire system, such as the terminal and its associated software.

Growing Complexity of Problems

All of the easy jobs have been done. From now on the applications for
electronics (and for computers) will be more difficult and more challenging.
The simple, sweeping solutnon will become more elusive and less likely to be
applicable.

Engineers have tended to address problems that were easy to solve, for
example, the design of radio transmitters and receivers. More difficult prob-
lems, for example, air traffic control (that may use radio transmitters and
receivers as subsystems), are ‘being tackled now. The really difficult prob-
lems, for example, des1gnmg a total transportation system from portal-to-
portal, are much, much more difficult to solve and probably represent the
challenges of the next 25 years.

The more complex problems do not have simple, fixed solutions. Solu-
tions may have to be able to adapt to changmg conditions, and this adapta- -
bility is most easily provided in the form of software for a computer. The
earliest traffic lights, for example, had simple séquential timer control of an
intersection. Later, as traffic grew, multistate cotitrollérs weré created that
could operate on different cycles, depending on the time of day ‘and the
instantaneous traffic. Now, with microcomputers at each corner, the traffic
signal’s sequencing may be the result of adaptation to the overall traffic den-
sity and flow. In the future all of the microcomputers may be linked to-
gether into a complex network that automatically optimizes the sequences of
traffic lights in order to maximize the efficiency of the traffic system as a
whole. Since nobody knows how to do this last step yet, it is the challenge of
the future. '

8 Whatis Software? -

Coding may take a few hours to complete and debug and there will be little likeli-
hood that it will have to be torn down and written over agam asa result of design
changes.

The novice is working upward from the most detaxled available level of knowl-
edge toward the eventual system. The experienced desigher is working from
" system specifications downward toward the actual program implementation. In
the novice’s case, the quickly written program is produced with the assumption
that it will ultimately prove useful to the whole design. This is—at best—a risky
prediction. The experienced designer is betting that at some point the required
functions can somehow be 1mplemented this is most certamly a ‘surer kind of pre-
diction. -

, Programmmg is just as difficult (and as ‘easy) to do as electromcs circuit de-

sign. Writing code down on paper. is just a bit mswr than wrappmg wire or solder-
ing, that’s all. The same design and debugging steps have to be taken in either
case. If you can habitually read the specs for a project and then go directly to the
bench and wire up some circuitry that works, you are one of those rare people
who can write correct program code ‘“on-the-fly.’’ If, however, you are a mere
mortal like the rest of us and have to spend some time ¢onsulting books and try-
ing different alternatives on paper before you can produce a schematlc, you will
find that the same methods also work best with software.

Sume engineering-dominated companies relegate programmers to support and
technician-level roles. There .organizations are, easily identified. Their program-
mers spend time producing programs that solve “flaps,” are transient instead of
steady-state, are devoid of documentation, can only be used by the programmer
who originally wrote them, and are not saved as a part of the organization’s soft-
ware resources llbrary When the programmer leaves the group, any attempt to
~ use the program again or to extend it fesults in paying another programmer to re-
* write it, often with.the same undésirable side effects. Experienced programmers
know that there are no ‘‘quick-and-dirty’’ programs—not Quick, anyway.

The objective of the rest of this design course is to show you how to specify,

design, implement, and test reliable and efficient software with the least amqunt .

of fuss and bother. If we are both successful in our communication, you will learn
‘how to avoid the. pitfalls that have trapped so many budding programmers in the
past. Even if you never program yourself, having the skill in reserve is a worth-
while objective. You never know when you will have to communicate with another
programmer. .

s§-52/ 4

3

14

Procedures

and Data

In its raw, delivered state, just after power is applied, a computer is a pathetic
piece of universal electronics. It is raw potential, but it has no purpose. A com-
puter, as you have already learned, is capable of doing only two things:

1. Fetching an instruction from some storage medium
2. Executing that instruction

But it does so éndlcssly and rapidly. What we lack ‘in our raw computer is a pro-
gram, the group of instructions that will be sequentially executed to achieve a spe-
cific and defined objective. The combination of a raw, unadorned computer with

a well-written and debugged program forms a special-purpose machine. What you

do with it depends on how you program it.

Analogy of a Program }

We have all had the exasperating experience of having to deal with a faithful,

loyal, and dedicated employee who follows every instruction precisely as given but .

who uses no common sense. Well, conjure up a person like that and let him be our
computer for a nioment. We will sup'ply‘the faithful clerk with a calculator (an
arithmetic unit) and a sheet of instructions (Figure 2.1). If our clerk is unerring in
following the instructions, the OQUT basket will end up with a stack of papers that
is a transformed version of the original IN basket contents. If the desired output
from the process is the correct transformation of the input according to the in-
struction sheet, we have a correct and valid program. '

Figure 2.1 A devoted clerk can be conceived of as an analog
of a digital computer; it is also a way to test your instructions.

Such a program cannot be supplied to a computer, of course. Computers are
not very good at reading the English language. In Figure 2.2 you can find three
distinct meanings for the sentence. (What does a computer do in that case?). Fur-
thermore, we have not handled all of the cases for even this simple condition. For
example, what if the OUT basket becomes full and overflows onto the floor?
What should we do on our instruction sheet to tell the clerk to watch out for over-
ftow and do something different? Once your computer program is underway doing
useful work, you won’t be able to intervene and handle all of the special cases like
the overflow of the OUT basket.

10

