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Benchmark on Supercomputers
for an Industrial Environment -

Emmanuel Vergison
Solvay Scientific Computer Centre
rue de Ransbeek 310
B-1120 Bruxelles

ABSTRACT

The aim of this study is to provide an industrial
scientific and technical computer center vith a
reliable and exhaustive tool for making comparisons
of performances betveen different computers
including those of the new generation (parallel and
vector machines). )

INTRODUCTION
The methodology adopted for providing an
industrial technical and scientific computer center

vith a reliable and exhaustive tool for making
comparisons of performances between scalar and
vector or parallel computers, is based on three main
approaches : . .

- general purpose considerations covering
scalar and vector compilation, computer
architecture, programming language, debugging,
development tools and training & education

- practical test cases, themselves subdivided into
three subgroups 3 ’
. basic operations and wmanipulations such
as floating |point operations, -elementary
mathematical functions, do-loops and branching
. linear algebra, this chapter being of major use
for the practical applications and allowing
precise estimates of the computatiorial work
involved.
This chapter
manipulations and
system solvers :
industrial applications covering
fluid mechanics, chemical engineering,
heat transfer and management

covers vector & matrix
direct algebraic linear

- complementary studies in order to measure the
manpover investment needed to make an intelligent
use of the vector facility, either in vectorizing
existing code, or by developing automatic tools
capable of overcoming vector inhibitors.

The test cases under consideration were
programmed in different vays'in order to show what
vorking principles the vectorizing processors are
based on, and to highlight the compiler capabilities

as wvell as the programaing effort that is to be

expected.

- The L e used is

FORTRAN
carried out in FORTRAN 66).

.

anguag full
77/ANS1I  X3.9 - 1978 (only a fev tests vere
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The computer environments on vhich the tests
vere carried out, vere composed of two subgroups of
machines : mini-computers and super-computers,
keeping in mind both departmental and centralized
solutions. .

A summary of the machines’ overall performances
is presented in the appendix. -

THE "CLASSICAL® BENCHMARK

Since wve aimed to check both scalar and vector
capabilities of the machines in order to obtain an
estimate of the absolute performances of computer
codes, the benchmark is CPU oriented and all the
tests vere carried out in a single user environment.

Although wve focused especially on computing
performances, the benchmark wvas also designed to
study compiled Fortran code efficiency and the
ability of compilers to vectorize, that is, to’
render programs automatically suitable for super
performance. ol

General Purpose Information

To begin with, ve need a comprehensive viev of
vhat parallelism or vectorization means for each
manufacturer.

So before starting any machine test, ve have to have
clean and comprehensive documentation on the follow-
ing subjects :

Architecture

. to wvhich category does the computer belong :
pipelined, array processor, M.I.M.D. [1] ?

. hov does vector processing work, i.e. hov does it
process array elements ?

. hov does the system handle multitasking, if any ?

Compiler

. what about compiler capabilities,
vectorize and how ?

. are there .levels of vectorization; for instance
does the compiler handle individual statements
-inside do-loops ? If any, which ones ?

. what about compiler versatility ? Can ve compile
both in scalar and vectorized mode the programs
written in scalar Fortran 77 ? :

vhat is its compatibility vith Fortran 66 ? Does
the program have to conform to Fortran 77 to
execute correctly when vectorized ?

. vhat are the compiler vectorizing optimization
levels, if any ?

what does it



Langugge

. to what
extensions ? )

. if any, do they conform to the Fortran 8x draft ?

. which statements are vectorizable ?

. which data types can be handled by the vectorizing
compiler ? ,

extent  are there vector

Performance Analyzers (Erofilers)

extent

. to wvhat does the system provide the user
with runtime information 1like the time spent in
specified parts of the code or in subroutines ?

Reporting
to what extent does the system produce a cross

reference map or an output that shovs the way
vectorjzation ~was A performed and to what extent
does it give directives to improve the coding ?

Debugging

. can programs be debugged at any optimiza-
tion or vectorization level ?

1
Mathematical Support

. does the manufacturer provide the user vith any
optimized mathematical software ?
to vhat extent does it conform to the Basic Linear
Algebra Subroutines concepts ?

Third Party Software

. does’ the machine allow for widely used scientific
and engineering software ?

Practical Testcases

All these tests are programmed in stapdard
Fortran 77 and the typical vector sizes used are 50,
64, 100, 300, 500 and 10,000.

Basic Arithmetic & Programming = Operations :
these include floating point operations and
elementary mathematical functions evaluations on
vectors, do-loops and branching.

Floating Point Operations : sixteen cases,
taken  from a benchmark by Karaki. [2], are
considered; they reflect common wmanipulations of

-scientific programming.

Elementary Mathematical Functions : frequently
used mathematical functions have been tested. The
only point to be stressed is the choice of different
domains of definition for the sine, cosine and
tangent function in order to take into account the
fact that computing algorithms may depend on it.

Do-loops

typically well suited structure for vectorization
are considered [3] : flow dependence, anti
dependence, vectorization by loop distribution,
vectorization by loop distribution and reorderisg,
partial vectorization by loop distribution, as well
as reducing scalar dependence by scalar manipula-
tions.

several scenarios involving this

language

Pl
-

{4

Branchirg H this Achilles’ heel of
vectorization is, a priori, a hard to vectorize
structure.

None the less, we -tried to detect possible
parallelism by wusing boolean structures and a

masking technique [3].

Linear bra
Four groups of problems have been tackled :

- vector manipulations including the dot product,
the DAXPY form and vector components summation

- matrix by vector products based either on the dot
"product or on the DAXPY form

- matrix by matrix multiplication based on the same
techniques and

- direct linear algebraic solvers.

Vector Manipulations

The dot product £ X3Ys, f=1,..,n and the :
DAXPY form 2j = Y; + aXj , 1 = 1,..,n are the basic
structures of many algorithms in linear algebra.

Their treatment depends. strongly -on the hardvare
architecture, so we found it interesting to check
their respective performances as - BLAS level 1
operations.

Matrix by Vector Product

The performances of both the dot product based
multiplication : . ,

de 10 i = 1,n
de 10 j = 1,n .
10 c(i) = c(i). + a (i,j) * b(j)

or the DAXPY form one :
de 101 = 1,n
de 10 j = 1,n
10 c(j) = c(J) + a(d,i) * b(i)

have been .coded.
Matrix by Matrix Product

Here again, dot product and DAXPY forms were
implemented as well as the "outer product” algorithm

de 10 k = 1,n
de 10 j = 1,n
de 10§ = 1,n °
10 c(i,3) = e(i,j)+a(i,k) * b(k,])
A point of supplementary interest concerning
these matrix by matrix routines is the vay the

vectorizing compiler handles nested do-loops.

Algebraic Linear Systems

The purpose of this chapter is to solve linear
algebraic systems using direct methods' : the
Gaussian and . the Crout vatiant for non symmetric -
matrices and the Cholesky for symmetric ones. ’

Both the Crout and Gauss nethods require the
same = computational effort, (2/3)n3 operations,
n being the matrix dimension) vhile Cholesky’s needs
only half of this. For example, a 100 X 100
non-symmetric system would -require about

680,000 floating operations (flops).



The matrix under study is the Frank one that
takes the form .

(a(ioj))nxn = (n+l - lax(ivj))nxn

It has an interesting feature being the inverse of a
matrix vhich can be considered as a discretized form
of a twvo point boundary value problem. '

Twvo kinds of coding vere implemented : a non
sophisticated one (diagonally dominant pivoting). for
both the Gauss and the Crout methods, the overheads
being minimized and a more robust form of both the
Gauss and Cholesky methods coded in a BLAS form by
Dongarra and Eisenstat [4].

Application Programs

The applications described in this chapter are
divided into four groups. For the first one, ve can
reasonably expect improvement simply by compiling;
programs in the second need changes at the
algorithmic level. )
The third group s
potentially contain parallelism, vhilst the last one
contains those where parallelism can hardly be
expected a priori. h
To be closer to reality, some programs are written
in single precision. ’

%pplicntions Vith Compiler Detectable
Parallelism L

~ ‘Tvo applications have been selected, one in
fluid mechanics and one in heat transfer.

Fluid Mechanics : ‘a steady  two dimensional
turbulent uid lov is calculated, using an
jterative "time marching" technique baséd on the
finite difference Marker & Cell (MAC) method.

This program, implemented in single precision, vas
dealt with in further complementary studies [6].

Potential Equation : a potential equation
solver, based on a multigrid algorithm and written
in double precision, vas added to the benchmark
because the multigrid technique offers three

interesting features :

. it is one of the most poverful PDE
solvers

. it is naturally vectorizable

. it is easy to make operation count °
estimations.

Application Programs Needi
Algorithmic es For Vectorization

A one dimensional nonlinear heat equation,
using an unconditionnally stable algorithm requiring
a tridiagonal 1linear system solver, has been coded
in two vays (both in double precision).

In the first version, the tridiagonal system is
solved by the classical Gaussian elimination
algorithm using forvard elimination and backwvard
substitution. )

A total of 9n scalar arithmetic. operations is
‘required, . but ve have to keep in mind that there is
one division and some overhead due to integer
manipulations as vell as routing. -

e

made of programs. vhich.

‘using the

" operations

A variant, based on a cyclic reduction algorithm,
better suited for parallel computing, has been

. implemented.

It requires 17 (n + ny * logy n) operations where ny
is the machine = half “performance : length [1],
typically 10 for a CRAY 1, 2 for a PPS/164 and 0 for
a scalar machine.

Potentially Vectorizable Applications

Many applications in chemical engineering use
numerical algorithms which can be vieved as fixed
point iteration techniques (Picard’s method); these
algorithms are "vector minded” and should give good
results on parallel machines. -

Pirst a non linear regression analysis program
designed to check the statistical consistency of.
productions and consumptions by finding the paximum
likelihood estimates of the model parameters was
coded in Fortran 77, in double precision.  The
constrained nature of the problem introduces
non-linearfties that are handled using Picard’s
method . ’ -

Secondly, a set of kinetic equations, solved
classical Runge-Kutta method was
implemented. Due to problem complexity, the
formulation of the second members of the
differential equations makes an intensive use of
function calls which can actually. prevent any
benefit of vectorization.

This test case bridges the gap with the next.
paragraph.

Applications Vhere Parallelism Is Not
To Be Expected

As far as we knov from our experience, the
programs vhich fall into  this category are the
research ones, those using complex
jndirect - addressing in their numerical algorithms
and those making an intensive use of subroutines and
function calls. Two examples vere used.

Operations Research

A branch .and bound algorithm with binary
variables (0-1) and pure integer data, for solving a
large linear system with linear constraints vas
implemented in single precision.

Linear Mean Squares

‘The minimal norm problem is to be solved :
minimize

[1ax - bli2,

where A belongs to R® X P, m > n

and is sparse vith random structure.

Sparsity, here means that the matrix density d(a),
defined as

number of nonzeroes of A
’

d(a) = m X n

should be less than or equal to 0.05. )

QR factorization exploring sparsity at syﬂtblic
level, was the algorithm adopted for solving this
problem. It was implemented in Portran 77, in
double precision, for the floating point aspects,
othervise in integers. —

Xvi



Ve first recall that the tests were carried out
in a single user environment and that the set of
tested machines has been divided into two
subgroups :' the mini-supercomputers or "crayettes",
and the super-computers as shown in the table below
(the scalar DEC 8700 was chosen as a reference)

Attached Processor & Hono-user
Vide Instruction Vord Machine
SJE operating system -

FPS M64/60

Stand alone & Multi-user
Vector Machine
UNIX derived operating system

CONVEX C1/XP

Stand-alone & Multi-user
. Vector Machine
UNIX derived operating system

" CONVEX €210

Stand-alone & Multi-user
Parallel Machine with 4
computer elements

UNIX derived operating system -

ALLIANT FX/4

NE3Em>0

Stand-alone & Multl-user
Vector Machine
EOS operating system

ETA10 MOD P

W

CYBER 990

Stand alone & Multi-user
Vector Machine
NOS/VE operating system

Stand alone & Hulti?user
Vector Machine
NOS/VE operating system

CYBER 205

Stand-alone & Multi-user
Scalar Machine with Vector
. Pacility

MVS or VM/CMS operating

IEH 3090/150

system

: Stand alone & Multi-user
IBM 3090/180

Scalar Machine vith Vector -
Facility - .
MVS or VM/CMS operating systeam

o3

wwm-ic'v:laowu&-vcm

Back End Processor
Vector Machine
COS operating system

[

CRAY/XMP 145B
*)

The computer environments of the benchmark

(*) by courtesy of Professor R. DEVILLERS
from Brussels Free University

The tables in the Appendix summarize the
results obtained on all the machines except the IBM
3090/180 and the CYBER 205, the reason being that :

- the overall performances of the IBM vere estimated
at 1.2 times those obtained from the IBM 30907150.

-We also note that ve were interested in the
IBM 3090/180 machine because it is the basic
module of the IBM 3090 field-upgradqple family
(Models 200 to 600)

XVils

- the results we obtained from the CYBER 205 are
estimated at 2.5 times those we got from the
CYBER 990.

Ve will nov comment on these resulté.

Results From The Basic Operations

presented in Table 1 oI . the
Appendix, are average values vith typical vector
lengths - of n SO and n 500, which wvere
considered as the most representative of ‘our vork.
Detailed results are shown Eﬂj[‘]- -

The results,

e

Results Prom Linear Algebra

’

In Table 2 of the Appendix, the dot product and
DAXPY form results are presented for typical vector
sizes of 64 and 312.

Tables 3 and 4 show hov the dot product ahd the
DAXPY form reflect when implemented in both the
matrix by ‘vector and the matrix by matrix
multiplication. 0f great interest is the do-loop
unrolling technique (Table 4) which reduces memory
references . by using the vector registers more
efficiently [5]. ’

benchmark results of linear algebraic
in Table 5 of the appendix, were completed
by some machine specific equivalents. The use of
these specially tuned routines generally improves
performances substantially.

The
solvers

Results Prom The Applications

One should be very careful vhen interpreting the
results summarized in Table 6 of the appendix.
Ve inust remember that :

. the application part of the benchmark vas set up
without any special tuning, even if some
applications were, a priori, vectorizable and if
some additional wvork was carried out aftervards
either by the manufacturer or by ourselves

. though most applications vere programmed using
double precision, three important exceptions vere
included .in the benchmark : a fluid dynamic code
written in single precision, an operations
research one dealing with integer programming and
a linear mean square solver mixing double
ptecision and integer programming

tuning effort vas carried out on tvo programs :
golver and the fluid

. a
the non-stationary heat
dynamic code [6].

One general observation is that, without any
changes in the codes,” only the supercomputers
actually improve -the performances of the vhole set
of prograas. Hovever, all of them do it
significantly after some programming or algorithmic
wvork. | . o )

Particularly impressive is thé speedup alreadg
obtained by the replacement of old Fortran 6
structures by Portran 77 .ones, and by inserting
frequently called routines inline [6].



Overall Performances --

Although overall performances naturally raise
objections and criticisms, we found it appealing :

. to summarize in one table the average ratios ve
got from the computations, the DEC 8700 being
taken as a unit

. to give, to some extent, & realistic although
somevhat conservative idea of the machine’s
efficiency. -

Table 7 in the appe-dix summarizes the
characteristics of the machines tested so far. By
"presently expected ratios" we aean that veights
vere introduced to take into account the fact that
industrial! 1libraries contain programs that are, a
priori, not vectorizable or that are not wvritten in

a modern structured language.

CONPLENENTARY STUDIES

Tvo studies, complementa:y to the benchmark
described earlier, vere conducted in order to
quantify the manpover needed to vectorize a fluid
dynamics code and to develop an inline routine
in.cttinc pre-compiler in order to get round
subroutine calls which, used in do-loops, seriously
inhibit vectorization. .

Adaptation of s Fluid Dynamic Code

v The objective .of ~this work, conducted in
collaboration with Brussels Free University [6], was
to vectorisze the fluid dynamic code we mentioned in
"Applications vith Compiler Detectable Parallelism".

The procedure, that wvas folloved, can be
divided into four steps : . .
. performance analysis
. scalar re-programming
. algorithmic changes
. vector programming

Performance Analysis

A profiler (performance analyser) vas used to
detect those parts of the code that are the most
time consuming. This information coupled with
relevant directives provided by efficient co-pilers
shoved vhere to put one’s effort.

In our example, one routine consumed 60 ¥ of the
total CPU time and another one 20 X.

Scalar re-prograsming

Ve observed, vhen re-coding those parts of the
code detected by the profiler, that inline insertion
of routines, for example, already improved scalar
performances. Also replacing branching structures
by masking led to the same conclusion. These
changes are to be considered as a pre-conditionning

of the code.

XIX

. triads for example).

Algorithmic Changes

These may either affect the vhole algorithmic
strategy of the problem or only one part of it. 1In
the fluid dynsmic code under consideration, the time
marching ' procedure chosen to reach the steady statq
reflects an explicit iteration technique vhich does
not need special adaptutlon. '

It vas not the case for the innermost pressure
solver where the line by line mesh sveeping had to
be replaced by red-black orderins.

Vectorization

The first transformation that vas made, was to
re-vrite matrices as long vectors applying gathering
techniques in order to avoid space wasting and to
allov fast access to equally spaced vector
components. :

The' second  one - consisted in 1nserf1ng

parentheses to force execution of the arithmetic
operations in the most efficient order (linked

' Summary of Results of Code Vectorization

The folloving speedup ratios are calculated,
the DEC 8700 being taken as a unit.

BEFORE AFTER
TUNING TUNING
CONVEX C1 XP 0.7 6.1
CONVRX C210 - 16.8
FPS 64/60~ 3.1 7.9
BTA 10 MOD P - 35.6
ALLIANT FX/4 0.7 6.3
IBM 3090/150 4.8 9.4
CYBER 990 3.2 5.5
CRAY XMP/14SE| 17.3 19.0
In Line Ingerting Pre-Processor
The procedure followed, in a study made in

collaboration with Brussels Free University, is made
up of two steps preceding the compile-link-go : code
standardization and source code pre-processing.

Code Standardization

In order not to make the pre-précessing too
complex, the source code is standardized using
TOOLPACK, a set of programming development tools '
developed by the Numerical Algorithms Group [7].



Source Code Pre-Processing

This tool inserts routines in line, that means,
replaces subroutine calls by their full coding. The
pre-processor must be told which routines to handle.
This decision follows from the profiler’s analysis.
The compile-link-go acts on the processed source
code, vhile maintenance is done only on the origina
one. .

CONCLUSIONS

In spite of the inherent limitations imposed on
benchmarking work, amongst vhich :

. the necessity to make choices;

-+ the limited time available for benchmarking.

. the . faet that the units used to quantify
performances (seconds and MFLOPS) can be critised,
to some extent;

. the continuous improvements in hardware and
softvare;

. the fact that machine vorkload and I/0’s have not
been taken into account,

we - can conclude that we now dispose of a tool
capable of :

. giving a very good idea of the vector and
‘vectorizing capabilities and maturity of machines,
both from a hardware and a softwvare point of viev,
so reducing industrial choices to a few clear
strategies ’

. measuring precisely the effort needed to adapt old
programs or t6 write new ones

. checking how manufacturers cope with both third
party software and the present standardization
tendencies in scientific languages (Fortran 8X)
and operating systems (UNIX)

. adapting easily to nev approaches in computing
science. ’ 4 -

f

XX



[ APPENDIX : SUMMARY OF THE BENCHMARK’S RESULTS.

DEC [CONVEX CONVEX | FPS |ETA 10 |ALLIANT| IBM | CYBER | CRAY
8700 | €1 XP | €210 | 64/60 | MOD P | FX/4 |3090/150) 990 [XMP 14SE

FLOATING :
OPERATIONS 1.2} 2.8 | 10.0 | 6.7 54.2 | 7.2 19.1 | 31.7 ] 62.3
(MPLOPS) ' '

DO LOOPS 1.0 3.1 9.5 5.4 38.5 2.9 12.2 19.1 | 30.4
(MFLOPS)

MATH. FUNCTIONS
(MICRO SEC. PER [35.4 | 4.9- | 1.5 3.2 0.6 4.7 1.5, 2.9 0.3
OPERATION)

BRANCHING 580.1 770. 286. 302. 638. 601. 127. 248. 393.
(MICRO SEC.) - )

TABLE 1 : BASIC PROGRAMMING OPERATIONS

DEC [CONVEX [CONVEX | PPS |ETA 10 |ALLIANT| IBM | CYBER | CRAY
8700 | c1 XP | 210 | 64/60 | MOD P | -FX/4 |3090/150] 990 {xMP 14sSE
11.5 : ‘
66 | 1.3 | 9.1 12.7 25.1 | 4.3 | 15.6 | 25.6 | 22.9
14.6
DoT '
PRODUCT . 12.5
512 | 1.2 | 9.1 19.3 64.6 | 3.8 | 24.4 | 48.8 | 93.8
18.2 ,
o 8.9 8.4
64 | 1.2] 9.0 | 12.2 106.1 | 2.8 32.0 | 75.3
S E 10.1 13.8
DAXPY —
FORM . 9.4 12.6
512 { 1.2 | 9.0 | 15.3 157.9 | 3.1 41.0 | 82.0
‘ 12.3 25.

TABLE 2 : VECTOR OPERATIONS

REM. : vhen there are two figures in one cell, the second refers to tuned
vergsions of the code.

Xxi




DBC |CONVEX |[CONVEX | FPS |ETA 10 |ALLIANT| IBM CYBER | CRAY
8700 | c1 XP | c210 | 64/60 | MOD P | FXs4 |3090/150| 990 |xMP 14sE
DOT 50 |0.9] 2.0 | 6.0 ] 9.2 26.7 | 10.0 10.9 8.3 16.8
PRODUCT -
BASED 500 | 0.5 | 2.9 8.4 |11.9 | 116.4 | 1.4 3.6 5.3 | 52.6
DAXPY 50 | 1.1 | 3.6 | 10.7 7.7 22.5 | 2.6 19.5. | 20.8 45.5
BASED : : »
: 500 | 1.0 ] 5.5 |15.2 9.4 | 108.9 | 2.7 22.7 | 38.8 79.6
UNROLLED | 50 | 1.1 | 5.2 - 13.4 | 21.2| s.0 7.5 8.8 60.7
PORM ‘
500 |'1.0 | 9.3 - 18.6 | 59.3 | 6.0 7.6 8.9 | 121.4
USING so | - [12.6 [381 | 20.7] - - 48.4 _ _
SPECIPIC
LIBRARIES | 500 | - | 16.5 | 46.6 32.5 _ . 46.5 _ =
TABLE 3 : MATRIX BY VECTOR PRODUCT
pec |convex {convex | pps [ETA 10 |ALLIaANT| 1BM CYBER | CRAY
‘ 8700 | c1 xp | €210 | 64/60 | MoD P | PX/4 |3090/150| 990 |[XMP 14SE
BENCHMARK 50 |-1.1 | 11.7 | 34.1 | 10.1 19.5 | 9.4 22.6 | 22.9 48.3
BRST " -
FORMULATION {300 | 1.0 | 15.5 | 42.6 | 11.8 7n.s| 7.7 21.0° | 36.8 75.4
usine 50 - - 4C.4 32.1 - - 52.5 - -
SPECIFIC )
LIBRARIES 300 | - - 46.7 | 33.4 - - 65.4 - -
TABLE 4 : MATRIX BY MATRIX PRODUCT
DEC |CONVEX |CONVEX | FPS |ETA 10 |ALLIANT| 1BM CYBER | CRAY
8700 | c1 xp | c210 | 64760 | MOD P | FX/4 (30907150 990 |[XMP 14SE
CROUT 50 | 0.9 ] 2.0 9.4 7.2 15.1 7.9 6.2 5.0 | '8:5
METHOD -
300 |[0.8] 3.7 | 26.9 | 11.0 52.1 | 7.6 12.0 9.8 | 26.5
GAUSS 50 | 0.9 | 2.0 - 5.4 5.0 | 1.0 8.4 4.9 16.7
BLAS : R
300 | 0.7 | 3.6 - 7.1 10.2 | 3.5 16.0 | 10.3 42.1
CHOLESKY | 50 | 0.9 | 1.9 8.7 5.6 12.7 | 1.1 7.6 7.3 18.0
BLAS . -
300 | 1.0 | s.0 | 17.3 6.1 61.8 | 4.5 14.5 | 23.2 58.3
USING so| -7t - 9.0 | 18.3 - 2.4 16.8 - -
SPECIFIC -
LIBRARIES| 300 | - - 34.3 | 31.8 - 16.7 38.0 - -

TABLE 5 : LINEAR ALGEBRAIC SOLVERS

XX




ALLIANT

DEC |CONVEX |CONVEX FPS ETA 10 IBM CYBER CRAY
8700 | c1 xp | C210 64/60 | MOD P | FX/4 |3090/150] 990 |XMP 14SE
148.5 - 54.2 29.5 - 33.9 43, 18. -
HEAT EQUATION 77.7 = - -
45, 14.8 32.0 69.6 30.3 9.9 - -
3656 - 790. - 3385. | S514. 776. 143.
FLUID 2475,
DYNAMICS 408. 147.2 315. 69.6 381. 262. 446. 130.
POTENT. EQUAT. 32.6| 24.8 6.9 9.7 20.7 23.0 7.1 18.0 4.7
OPERAT. RES. 118.0| 209.4 78.7 | 570.0 - 375.9 63.1 55.0 30.
LIN. MEAN SQ. 318.7| 347.5 74.9 79.1 125.5 | 476.5 { 68.6 52.0 18.7
REGR. ANALYSIS | 18.0| 9.0 5.6 2.5 2.3 - - 3.6 3.0
CHEM. KINETICS 14.0 - - 5.1 7.4 - - 3.5 2.3
TABLE 6 : APPLICATION PROGRAMS
REM : vhen there are two figures in one cell, the second refers to tuned
versions of the code. .
DEC |CONVEX |CONVEX FPS ETA 10 |ALLIANT IBM CYBER CRAY
8700 | C1 XP | C210 64/60 | MOD P FX/4 |3090/150| 990 |XMP 14SE
BASIC OPERAT. 1 3.0 11.1 6.0 36.9 4.1 "13.9 15.0 56.4
LIN. ALGEBRA 1 5.4 27.6 9.7 59.4 5.1 16.0 20.6 52.6
APPLICATIONS 1.1 - 3.6 - 0.9 4.6
*) 1 - 3.9 10.0
(**) 2.2 6.9 4.6 8.7 2.8 6.6
3.2 - 6.4 - 3.4 11.5
AVERAGES 1 13.2 39.7
3.5 15.2 6.8 3.5 4.0 12.2 :
VEIGHTED ’ 1.0 - 3.1 - 0.8 4.1
RATIOS 1 3.6 _9:1
1.9 6.3 4.0 7.6 | 1.8 5.8
TABLE 7 : PERFORMANCE RATIOS, THE DEC8700 BEING TAKEN AS A UNIT

(*) without the "spaghetti”™ operations research program
(**) second figures refers to tuned versions of the codes.
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