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- Foreword .

This book contains a compressed introduction to the study of normed
linear spaces and to that part of the theory of linear topological spaces

. without which the main discussion could not well proceed.

. Definitions of many terms which are required in passing can be
found in the alphabetical index, page 134. Symbols which are used
throughout all, or a significant part, of this book are indexed on page 132.
Each reference to the bibliography, page 124, is made by means of the
author’s name, supplemented when necessary by a number in square
brackets. The bibliography does not completely cover the available
literature, even the most recent; each paper in it is the sub)ect of a
specific reference at some point in the text.

The writer takes this opportunity to express thanks to the University
of Illinois, the National Science Foundation, and the University of
Washington, each of which has contributed in some degree to the
cultural, financial, or physical support of the writer, and to Mr. R. R.
PHELPS, who eradicated many of the errors with which the manuscript
was infested. '

Urbana, Illinois (USA), September 1957 MABLON M. Day
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Chapter I

Linecar spaces
-§ 1. Linear Spaces and Linear Dependence

The axioms of a linear or vector space have been chosen to display
some of the algebraic properties common to many classes of functions
appearing frequently in analysis. Of these examples there is no doubt
that the most fundamental, and, earliest, examples are furnished by the
n-dimensional Euclidean spaces and their vector algebras. Nearly as
important, and the basic examples for most of this book, are many
functiori spaces; for example, C [0, 1], the space of real-valued conti-
nuous functions on the closed unit interval, BV [0, 1], the space of
functions of bounded variation on the same interval, L? [0, 1], the
space of those Lebesgue measurable functions on the same interval
which have summable p* powers, and A4 (D), the space of all complex-
valued functions analytic in a domain D of the complex plane.

Though all these examples have further noteworthy properties, all
share a common algebraic pattern which is axiomatized as follows:
{BANACH, p. 26; JACOBSON).

Definition 1. A linear space L over a field A is a set of elements
satisfying the followmg conditions:

(A) The set L is an Abelian group under an operation +; that is,
+ is defined from L x L into L such that, for every x, y, 2in L,

(a) xty=y+=% (comm\itativity)
(b) x+(y+2)=(+y+z (associativity)
{c) there is a w dependent on x and y such that x 4 w = y.

(B) There is an operation defined from A X L into L, symbolized -
by juxtaposition, such that, for 4, uinAand x, yin L,

(d) Alx+9) =2Ax+ 4y, A (distributivity)
{e) A+p)x=2Ax+ px, L (distributivity)
® Apx)=@u x,

® 1x=2x  (where 1 is the identity element of the field).

In this and the next section any field will do; in the rest of the book
order and distance are important, so the real field R is used throughout,
with remarks about the complex case when that field can be used
instead. Cs

Ergeto. d. Matbem. N. F. H. 21, Day 1



2 1. Linear Spaces

(1) If L is a linear épace, then (a) there is a unique element 0 in L
suchthat x+ + 0=0+r=rand u0=0x=0forallyinAdand xin L;

(b) ux=0if and only if 4 =0 or x =0, (c) for each xin L thereisa

unique y in L such that x +y =9+ x =0 and (—1)x = y; (then for
z,xin L definez—x =2+ (—1l)xand — x = 0—x).
(2) It can be shown by induction on the number of terms that the

commutative, associative and distributive laws hold for arbitrarily -

large finite sets of elements; for example, 3’ x;, which is defined to
isn
be ux1+ (%34 (" » -+ %,) -+ ), is independent of the order or groupmg

of terms in the process of addition.

Definition 2. A non-empty subset L’ is called a linear subspace of
L if L’ is itself a linear space when the operations used in L’ are those
induced by the operations in L. If x 4=y, the line through x and y is
the set {ux + (1 —pu) y: u €A}. A non-empty subset E of L is flat if
with each pair x # y of its points E also contains the line through
x and y.

(8) L' is a linear subspace of L if a.nd only if for each x, y in L' and
eachAinA, x + yand Axarein L’

Definition 3. ¥f E, F< L and z € L, define

E+F={x+y:x¢Eand ycF}. —E = {—x:x¢E},

E+z={x+2zx¢E}, E——z-E+(—-z) E—F= E+(—~F)

(4) (a) E is flat if and only if for each x in E the set £ —x is a linear
subspace of L. (b) The intersection of any family of linear [flat] subsets
of L is linear [either empty or flat]. (c) Hence each non-empty subset
E of L is contained in a smallest linear [flat] subset of L, called the
Unear [flat] hull of E.

Definition 4. If L is a linear space and x,, .. ., x, are pointsof L, a
point x is a linear combination of these x, if thereexist 4, . . ., A, in A such
that x = Z’ A:%;. A set of points ECL is called lmearly independent

i Eis not 9 or {0} and! no point of E is a linear combination of any
finite subset of the other points of E. A vector basis (or Hamel basis)
in L is a maximal lihearly independent set.

(5) (a) The set of all linear combinations of all finite subsets of a
set E in L is the linear hull of E. (b} E is linearly independent if and
only if for x,,..., %, distinct elements of E and 4, ..., 4, in A the
condition Z A x;= 0 implies that 4= A3= - = A= 0

Theorem 1 If E is a linearly independent set in L, then there is a .

vector basis B of L such that B2 E.

Proof. Let @ be the set of all linearly independent subsets S of L~

such that EC S; let S; = S, mean that S; 2 S,. Then if &, is a simply
ordered subsystem of & aud S, is the union of all S in &,, Spisalso a

1 @ is the empty set; {s} is the set containing the single element 5.

Ed



§ 1. Linear Spaces and Linear Dependence 3

linearly independent set; indeed, x,,..., x, in S, imply that there
exist ‘S, in &, with x; in S,. Since &, is simply ordered by inclusion,
all x,; belong to the largest S; and are, therefore, linearly independent.
Hence Sy¢ & and is an upper bound for &,. Zomn’s lemma now applies
to assert that E is contained in a maximal élement B of &. This B is
the desired vector basis, for it is a linearly mdependent set and no
linearly independent set is larger.

Corollary 1. If L, is a linear subspace of L and B, is a vector basis
for L,, then L has a vector basis B 2 B,,.

(6) If B = {x,:s¢ S}isa vector basisin L, each x in L has a represen-

tation x = 3 A,x,, where ¢ is a finite subset of S. If == 3 A%,
s€a ‘t“l
= 3 py%, then 4,= p, for all s in o;Na; and A,= O for all other s
8€0, -
in g, and ‘u,= 0 for all other s in ¢,. Hence each x == 0 has a unique

Tepresentation in which all coefficients are non-zero, and .0 has no
representation in which any coefficient is non-zero. [Also see § 2, (2c).]
This property characterizes bases among subsets of L. .

Theorem 2. Any two vector bases S and T of a linear space L have
the same cardinal number.

Proof. Symmetry of our assumptions and the Schroeder-Bernstein
theorem on comparability-of cardinals (KELLEY, p.28) show that it
suffices to prove that S can be matched with a subset of T. Consider
the transitively ordered system of functions @ consisting of those
functions @ such that (a) the domain Dy< S and the range Ry< 7.
(b) @ is one-to-one between D, and R,. (c) Ry (S\Dy) is a linearly
independent set. Order @ by: ¢ = ¢’ means that g is an extension of ¢'.

Every simply ordered subsystem @, of @ has an upper bound ¢,:
Define D, = U D, and g4fs) = ¢@(s) if s€D, and @€ D, This g,

is defined and is in @; it is an upper bound for @,. By Zorn's lemma
-there is a maximal ¢ in @. We wish to show that D,=S. .

If not, then R, == T, for each s in the complement of D, is de-
pendent on ‘7 but not on R,. If ¢ is in T\R,, either f, is line-
arly independent of R,y (S\ D,) or is dependent on it. "In the
former case, for arbitrary sy in S\ D, the extension ¢’ of ¢ for which
@'(se) = ¢ has the properties (a}, (b), and (c), so ¢ is not maximal.
In the latter case, by (c) and (6)

0= 2 A + 2 UsS

. CER

where at least one y,, is not zero, because by is mdependent of R,.If ¢’
is the extension of ¢ for which @'(So) = #p, then ¢’ obviously satxsﬁes
(a) and (b); also' Ry \v (S Dy) is linearly independent, because otherwise
t, would depend on R, U (S \D ), a possibility prevented by the choxce »

of 5o, and again @ cannot be ma.x1mal
1



4 o I. Linear Spaces

This shows that if ¢ is maximal in @, then D, = S; then the cardinal
number of S is not greater than that of 7. The Schroeder-Bernstein
theorem completes the proof of the theorem. :

Definition 5. The cardinal number of a vector basis of L is called
the dimension of L.

The linear space with no element but 0 is the only linear spacé
with an empty vector basis; it is the unique linear space of dimension 0.

(7) (a) If K is the complex field and if L is a vector space over K,
then L is also a vector space, which we shall call L,, over the real
field R. (b) The dimension of Ly, is twice that of L, for x and i x are
linearly independent in L.

§ 2. Linear Functions and Coniugate Spaces .

In this section again the nature of the field of scalars is unimportant.

Definition 1. If L and L’ are linear spaces over the same field A,
a function F (sometimes to be called an operator) from L into L’ is called
additive if F(x + y) = F(x) 4+ F(y) for all x, y in L; homogenous if
F(Ax) = AF(x) for all 2 in 4 and «x in L; linear if both additive and
homogeneous. An one-to-one linear F carrying L onto L’ is an ¢so-
morphism of L and L',

(1) (a) Let B be a vector basis of L and for each b in B let y, be a
point of the linear space L'. Then there is a unique linear function F
from L into L’ such that F (b) = y, for all b in B; precisely, using § 1, (6),

F(Z lbb)=Z Ao ¥y
bco
(b) If Ty is a linear function defined from a linear subspace L, of L into
a linear space L’, there is an extension T of T, defined from L into L',
{¢) T is called 1dzmpotmt if TTx= Txfor all xin L. If L, is a linear
subspace of L, there is an idempotent linear function (a projection)
P from L onto L, (d) There is an isomorphism between L and L’ if
and only if these spaces have the same dimension.

Linear extension problems are much simplified by the basis theorems.

Lemma 1. Let L and L’ be linear spaces over A and let X be a
subset of L, and let f be a function from X into. L’. Then there is a

linear function F from L into L’ such that F is an extension of f if and

only if whenever a linear combination of elements of X vanishes, then
the same linear combination of the corresponding values of f also vani-
shes; i. e., 1f):}.‘x = 0, then Z}.J(x,) = i :

Proof. The neécessity is an unmedlate consequence of the linearity
of F. If the condition holds, define g at any point y = 2z in Ly,

the linear hull of X, by g(y) = X A/(x). If also y=%'l;x;, then .
i ' . - ’



§ 2. Linear Functions and ( Conjugate Spaces §

z‘,‘l,x‘——‘]‘;l;x;;: 0 so N4,/ (%) — X Af(%) = 0, and g(y) is deter-
4 3

mined by y, not by its representations in terms of X. This shows at
once that g is linear on L,; (1b) asserts that g has a linear extension F.

Definition 2. (a) If L is a linear space, then L3, the confugate space of
L, is the set of all linear functions from L into the field A. (b) Let S
be a non-empty set of indices and for each s in S let L, be a linear space

over A. Let JT L, be the set of all functions x on S such that x(s) ¢ L,
s€S
for all s in S; let 3’ L, be the subset of J7 L, consisting of those
s€S sES
functions x for which {s: x(s) 3= 0} is finite. Then these function spaces

are linear spaces under the definitions
(% + ) (s) = 2(s) + y(s) and (Ax)(s) = 1(x O)]

for all x, v and all 2. They are called, respectively, the dsrec product and
dsrect sum of the spaces L,. (c) L8 is the special direct product in which
all L,= L.
(2) (a) L¥ is a linear subspace of AL; hence L# is a linear space.
(b) (X L,)# is isomorphic to JT (L¥). (c) If {x,: s ¢ S} is a basis .
s€d €S

for L and if for each s in S, /, is the unique element of L# such that 'v
la(%) =1, f4(xs) =0 if s’ & s, then for each x in L, o,= {s: f,(x) & 0} is
a finite subset of S and for every non-empty 620, ¥~ 2 fs(x) x,.

‘(d) If {x,:s¢ S} is a basis in L, then L is isomorphic to ZLS, where
5€8

each L,= A, and L# is isomorphic to A5. (e) If z, 1= ¢ < n, are
linearly independent elements of L and if 4;, 1 < ¢ < #», are in A4, then
there exists fin L# such that f(x,) = 4;, 1 S i< n.
Definition 3. A hyperplane H in L is a maximal flat proper subset
of L, that is, H is flat, and if H’ 2 H and H’ is flat, then H’==H or H'= L.

() (a) H isahyperplanein L if and only if H is a translation ¥ + L,
of a maximal linear proper subspace Ly of L. (b) If f ¢ L#, if fis not 0,
and if A € A1, then {x: /(x) = A} is a hyperplane in L. (c) For each hyper-
plane H in L there is an { # 0, f € L#; and a 4 in 4 such that H={%€L:
(%) = A}; H is linear if and only if 4 = 0. (d) If the hyperplane H =
= {%: fi(x) = 4,} = {x: [3(%) = A4}, then there exists u = 0 in A such
that f,= ufy and 4= pul,,

Definition 4. If L, is a linear subspace of L, define a vector stmcture‘
on the factor space L|L, of all translates, x + L,, of L, as follows:
If X and Y are translates of L, define X + Y as in §1, Def. 3 to be
{*+9y:x€XandycY);defineAX tobe{dx: x € X}if 4 = 0,0X = L,
Let T, be the function carrying x in L to x + Ly in L/L,. A

Theorem 1. L/L, is a vector space a.nd T, is a linear, iunctxon from
L onto L/L.. : .



6 . I. Linear Spaces ,

" Proof. 1f x¢X and y€Y, then X=Tyx=x+Lyand Y = T,y
=y+ L, Hence X+ Y= {x+y+u+v u,vEL.,}-{x-l-y-{-w
WELg} = (x4 9y)+ Lo=To(x+vy). Hence X4+ Ye€L/L,, and T,
is additive. Similarly X = X + L,, so Ly is the zero element of L/L,.
H 240 then AX=2ATx=A{x+u: ucLl}={Ax+ Au:ucLy}
={Ax+viveLy}=TyAx), so AXCL[L, and Ty(dx) = ATy(x). If
A=0,0X = Ly = To(0) = T4(0x), so T, is homogeneous. Associativity,
distributivity, and so on, are easily checked.

Next we improve the result of (2e).

Definition $. A subset I" of L# is called total over L if f(x)=0- for
all fin I" implies that x = 0.

Theorem 2. Let I" be a linear subspace of L# which is total over L
and let ;,7=1,...,n, be linearly independent elements of L; then
there exist elements f,i=1,...,n, in I" such that f(x;) = 8;; (Kron-
ecker’s delta) for 1,7 =1, . '

Proof. To prove this by induction on #, begin with#n = 1. lf x,is a
linearly independent set, then x, == 0; hence, by totality there is an

fin I with f(x) + 0; set f;= fif(x,).

Assume the result true for » — 1 and let x,, ..., %, be indepéndent.
Then there exist f, . . ., fo_1such that f{(x) = dyfori¢,j=1,...,5—1.
Let T map FmtoA” by (THy=f(x,1=1,...,n We wish to show

T is onto I'™, so we suppose, for a contradxctxon that T'f is linearly
dependent on the Tf, i<, for all f in I Then Tf= Z'Z, T {,

50 (T/),-- Zl,f‘ () for j <=n. Then for j <, f(x;) = (Tf), = A,

so /(xn) = (Tf)n Zf(xc fl(xn) = f(Z fs (xn) x() T]ns yxdds after
subtraction that j(x,, P x,,) x) = 0 for all fin I this in turn

i<n
implies that x,,s ' f(xa) x;, a contradiction with linear independence
<n

of the x;, Hence there is an f in I'" such that Tfis independent of the
Thoi<w let fmf—X fx)f; so (Tf),=0if j<n; let fy=

i<n L, .
= /'/f (xa). Finally for i < let f,= fi— f: (%) fs. Then. fi(z;) = 8y for
5,1 S n. .

Corollary 1. (Solution of equations). If %,4=1,,..,n, are linearly
independent in L and if I'is a linear subspace of L# whlch is total over L,
and if 4,5=1,...,n, €A, then there éxists f in I" such that f(x,)
= 1‘, $ = 1 s, M

Proof. Set [= 2 i.‘ ... where the f; satisfy the conclusxon of the
theorem.

- Corollary 2. If fl, ..., [ are linearly independent elements of L#
then there exists %, . . ., #ain L such that f,(x,)=6“, and ifey,....ca€d,
there is an x in L such that fi(x) =¢ ford,7,=1,.
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Preof. Define Q from L into (L#)# by Qx(f) = {(#) for all { in L#.
Then Q(L) is total over L# and Theorem 2 can be applied.

Definition 6. If E is a subset of L, define EL = {f ¢ L#: f(x) = O for
all x in E}. If I' is a subset of L#, define I'; = {x € L: {(x) = 0 for
all fin I},

Corollary 3. Let ¢ be a finite subset of L# Then the deficiency of
@, that is, the dimension of L/p;, is the number of elements in a
maximal linearly independent subset of ¢. Hence (¢,)1 is the snfallest
linear subspace of L# containing ¢.

Proof. If f;,..., /s is a maximal linearly independent set in q;,
take x,,...,x, by Cor. 2. Then if xisin L, x =2 f;(x) x;is in ¢,.

CoiEn
Hence .the dimension of L/, is not greater than the number # of
elements x;. But if X,= x,+ ¢, and if Zt‘X,-— 0, then x—Zt 2

and #;= f,(x) = O; hence the X, are lmearly independent and' L[q: ). has
dimension precisely #.

If f vanishes on ¢, let ¢;= f(x;) and g = f— Y ¢,f;. Theng—fe g, *
. 1 8 -
and (g— /) (%) = 0,50 g—/=0. Hence f =g = 2 i

Corollary 3'. Dually, if ¢ is a finite subset of L and if I' is a linear
subspace of L# which is total over L, then the deficiency of ¢+ N I"in I
is the number of elements in a maximal linearly indepenident subset
of @. Hence (¢ N I"), is the smallest linear subspace of L containing ¢.

Corollary 4. If H,= {x: f,(x) = ¢;}, where the f; are linearly inde-

pendent elements of L¥, and if H = {x: f(x) = ¢} contains N H,,

isn

then there exists numbers #; such that f =} £/, and ¢= 2 ¢ ¢
isn

" Proof. The equations [,(x)=c¢,; f(x) =c+ 1, are mconsnstent ’
by Corollary 1 the functions /, f,, . . ., f, can not be linearly independent.

(4) Let T be a linear function from a linear space L into a linear
space L’; let Ly= T-1(0), let L,= T (L), and let T, be the natural
linear map of L onto L/L, Then L, and L, are linear subspaces of L
and L', respectively, and there is an isomorphism 7, of L/L, onto L,,
defined by T,(x + Ly = T x, such that Tx = T; Ty« for every % in L.

Definition 7. If T is a linear function from one linear space L into
another such space L’, define T#, the dual function of T, for each f
in L# by T# f/(x) = /(T ) for each xin L.

(5) (a) For each f in L'# the function T#/ is in L¥. (b) T# is a
linear function from L'# into L¥. (c) T#-1(0) = T(L)%, so T# is an
isomorphism of L'# into L¥ if and only if F carries L onto L’. (d)
T# (L#) = T-1(0)4, so T# catries L'¥ onto L¥ if and only if T is an
isomorphism of L into L', ‘



8 ) 1. Linear Spaces

Theorem 3. If L, is a linear subspace of L, then L is naturally
isomorphic to L¥/LL and (L/Ly)¥# is naturally isomorphic to L.

Proof. If i is the identity isomorphism of Lyinto L, then by (5) Uy= i#
carries L# onto LI and U§-(0) = L}. LIF and ZH/LL are isomorphic
under the U, associated by (4) with U, If T, is the usual mapping
of L onto L/L,, then by (5) T3 is an isomorphism of (L/Lo)* onto L}.

(6) Let L be a linear space over the complex field K and for each
fin L¥ let f = g + i h, where gand b are real-valued functions, the real
and imaginary parts of f. Then: (a) If f¢ L¥, then g and k¢ Ly
(See definition in § 1, (7).) (b) A(x) = —g(s x). (c) The correspondence -
between f and g is an isomorphism of (L), and (L(,)¥.

(7) L and L# (or any total linear subset I" of L#) give examples
of linear spaces in duality. L and M are said to be dual linear spaces
if there is a bilinear functional ,) defined on L x M such that for
each x % 0 in L there is a y in M such that {x, y) %= 0, and the dual
condition with L and M interchanged. Then (a) If 7 is defined on
L by Tx(y) =(x, y) for all y in M, then each Tx¢ M# and the range
T(L) is total over M. (b) Dually, if Uy(x) = (x, y) for all x in L,
then Uy ¢ L¥ and U (M) is total over L. (c) U is dual to T in the sense
that T x(y) = Uy(x) for all xin L and y in M.

(8) Extension problems will recur again and again throughout
this book. It will pay perhaps to see how simple linear extension prob-
lems are, due to the basis theorem. Let X be a linear subspace of Y,
let Z be another linear space, and let f, be a linear function from X
into Z; the problem is to find an extension f of f, defined and linear
from Y into Z. The question for linear functions is answered by (1b),
but further restrictions on the functions may make the problem insuper-
ably difficult. It is to be noted for later use that there are several
problems here, all equivalent in this linear case. These are: (a) The
“from” extension problem in which X is fixed and Y and Z arbitrary.
(b) The "“into’’ extension problem in which Z is fixed and X, Y arbitrary.
(c) The projection probiem in which X == Z and f, is the identity. Another
problem which turns out ultimately to be distinct from these in most
circumstances, is (d) the subspace projection problem in which Y is
fixed, and X = Z ranges over all subspaces of Y. The Hahn-Banach
theorem of the next section solves an. “into” extension problem: in it
the range space is the reals, and, in addition to linearity, the functions
are required to satisfy a domination condition. ,

Extension problems are considered in detailin V, §4, VI, §3,;and VII, §3.

§ 3. The Hahn-Banach Extension Theorem

Now we wish to consider convexity and order, so the real field R is

~ assumed hereafter; an occasional application to complex fields is noted.
A functional is a function with its values in the scalar field.
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Definition 1. A functional p defined on a linear space L is subadditive
if p(x+ y) S p(2) + ply) for all x,y in L; p is positive-homogensons
if p(r x) = r p(x) for each r >0 and each xin L; plssublmmxflt
has both the above properttes A sublinear functional $ is a pre-norm
if (A x) = {A] p(x) for all 4 in the field of scalars. A pre-norm p is a
norm if p(x) = 0 if and only if x = 0.

(1) (a) If pis a sublinear functional, then $ (0) = Oand——[:(——x)Sﬁ(x).

.(b) If p is a pre-norm in L, then p(x) = O for all xin L and {x: p(x) = 0}

is a linear subspace of L.

(2) Let S be a set, let m(S) be the set of all bounded real-valued
functions on S, let p,(x) = sup {x(s): s¢ S}, and let p,(x) = sup
{lx(s)l ‘s € S}. Then m(S) is a linear space, p, is a sublinear functional
in m(S), and P, is a norm in m(S). For each s4 in S, 2,,(X) = |2(sg)| is
a pre-norm in m(S).

Theorem 1. (Hahn-Banach Theorem) Let p be a sublinear functxonal
on L, let L, be a linear subspace of L, and let f, be an element of L3*
which is dominated by p; that is, fo(x) = p(x) for all x in Lg; then j,,
has an extension f in L¥# which is also dominated by p.

Proof. First we prove that f, has a maximal extension dominated
by p. Let & be the family of all linear functionals /' defined on linear
subspaces L’ of L such that L, L’C L and [’ is an extension of f
dominated on L’ by p. Define f'= /" to mean that / is an extension of /.
Then  is transitively ordered, and each simply-ordered subfamily &,
of & has an upper bound, the f defined on the union of the domains of
the /' in §, to agree with each such / in its domain. By Zorn's lemma
(KELLEY, p. 33) there is a maximal f in §; to show that this extension
has all of the properties desired, it suffices to show that its domain
of definition is L. Assume then that an /' in § is defined on a proper
subspace L’ of L; we show it can be extended, ‘

Take z not in L’ and, to discover the restrictions on any possible

extension, take x, y, in L’. Then

f@R—f) =Flx—ysp(—y) »
=pr+a+(—y—)spr+2)+py—2)

—p(—y =)~ Sp(x+35)—F(%).

" It follows that

sup {—p(—y—0)—/(); yeL}ysinf{p(x+2)—f(x);x€l’};

let ¢ be any real number between these two,

In the linear space Ly={x + rz: x¢L’' and r real} define f; by
f1(x 4+ 7r2) = f'(x) + r¢. Since each point w in L, determines its ¥ and r
uniquely and linearly, this defines f, in L{¥. To show f, dominated by $
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take w=x+7s. If r=0, f,() = f(x) < p(x) = p(w). H » %0, by
the choice of ¢ we have for every ¥ in L’ that . .

~ply—D—fE) scs Py +A—10).
Set ¥ = xfr, then
—pl—zlr—2) —F(x]r) S e < p(xlr +2) — F(=7) .
Multiply by r and use the right (left) half of this if r > 0 (if"f <'0); then

resplx+r2)—F(x)
or

hw) =1(®) +resp) .

This extension shows /' not maximal if L’ 4= L. Hence every maximal
dominated extension of f, satisfies the conclusion of the theorem.

Corollary 1. If p is sublinear on L and x4€ L, then thetexsanféL#
such that f(x) < #(x) for all xin L and f{x,) = p(xy).

Proof. Take L,= {r x,: 7 real} and fo(r xo) = 7 p(x,). .

Definition 2. The core of a subset E of L is the set {x: foreach yin L
there is an g(y) > O such that x + ¢y c E if f¢] < e(y)}..

Geometrically speaking, this means that every line through x meets
E in a set containing an interval (disc in the complex case) about x.

Definition 3. If x, y € L, the line segmont between them is the set
{tx+ (1—2y:0s¢<1}. A non-empty set E in L is convex if for
each plur of points in E the segment between them is in E. An open
segment is a line segment minus its end-points.

(3) (a) The intersection of a family of convex sets is either empty
or convex, (b) Hence each non-empty subset of a linear space L is
contained in a smallest convex set, k(E), the convex hull of E. (c) If E
is a non-empty subset of L, then k(E) = {‘2 Lxgom=1,2...,%5¢E,

P44

420, and Jt = 1}.
isn

(4) Say that a set E lies on one side of a hyperplanc H if k(E\H)
does not intersect H. When f¢ L¥, f + 0, and H = {x: f(x) = ¢}, then
E lies on one side of H if and only if f(x) — ¢ does not change sign in E;
that is, if and only if E lies in one of the two half-spaces {x: f(x) = ¢}
and {x: f(x) = c}.

Lemma 1. If p is a sublinear functional on L, if kis a posmvemmber,
and if E= {x: p(x) < k), then E is convex and the core of E is
{x: p(x) < k}; hence 0 is a core paint of E. :

Proof. If x, y€ E, thenp(t x + (1 —8) y) S t p(x) + (l—t)ﬁ(y)sk
so the segment from x to yisin E. i p(x) <*and y €L, plx+ty) =
= ﬁ(x) +tp(y). If p(y)=0=p(—y), e(y) is arbxtrary otherwise
take e(3) = (k—  (x))/max [p(5); p (—9)). :



§ 4. Linear Topological Spaces ' 11

Definition 3. Let E be a set with 0 in its core; then the Minkowsks
Junctional pg is defined for each x in L by

pr(x)=inf {r: x/r ¢ E and » > 0} .

Lemma 2. If E is convex and 0 is a core point of E, then pyg, the
Minkowski functional of E, is non-negative and sublinear, and pg is
a pre-norm if and only if 7E ¢ E whenever || < 1.

Proof. For each x, x/r € E if r is large enough, so pg(x), the inf of a
non-empty set of positive numbers, is- non-negatwe and finite. If
y=1tx1t>0, then

pe(y) =inf{r> 0: yfr ¢ E} = inf {r > 0: txfr ¢ E}
=inf {tr' > 0: xjr €E}=tinf {# > 0: x/r’' CE} = tpg(x) .

If x,, x, ¢ L, take & > 0 and choose 7, so that pg(x;) <7, < pg(x)+s;
then x,/r, € E. Set r = r,+ 7;, then (x + y)[r=(nfr) (z:/r)) + (rs]?) (x4/75)
is on the segment between x,/r, and x,/r,; by convexity, (x + ¥)/risin E;
hence pg(x + ¥) S 7 =1+ 7, < pg(%;) + Pr(%s) + 2&. Letting & tend
to 0 shows that pp is subadditive.

BorNENBLUST and SoBCzZYK showed that the Hahn-Banach theorem

holds over the complex field:
' Let L be a complex-linear space, let $ be a prenorm in L, let L, be
a complex-linear subspace of L, and let f, be an element of L dominated
by p, in the sense that |fo(%)| < p(x) for all x in L, Then fo has an
extension f in L¥ such that f is dominated by .

SuHOMLINOV proved the same result for complex or quatermon
scalars. BOBNENBLUST and SOBCzYK showed that if L, is only real-
linear, the desired conclusion may fail.

- * § 4. Linear Topological Spaces

Definition 1. If a linear space L has a Hausdorff topology in which
the vector operations are continuous (as functions of two variables) then -
L is called a linear topological space (LTS) If in addition every neigh-
borhood of each point contains a convex open set, then L is called-a
locally convex linear topological space (LCS).

(1) @ If Lisan LTSand U is a nelghborhood basis of 0, then
U= {U + x: U € U} is a neighborhood basis at x. (b) Hence every
LTS has a uniform structure compatible with its topology and vector
structure, and must be a completely regular space [KELLEY, Chapter 6].

(2) (VoN NEUMANN [2], WEHAUSEN). If L is an LTS, it has a
neighborhood basis U at 0 such that (a) 0 is the only point common

toall Uin U; (b)if U, V € U, then thereisa Win Usuchthat WS UNV;
(c)if UeUand jr] <1, then! rUCU; (d) if U €U there exists V€U

1 A set waththispropertyucalledsym:cxitheheldasml dcsmlifthe
field is complex. .
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such that ¥+ V' Q U; (e) Ois a core point of each U in U. L is also

~locally convex, if and only if U can also be chosen so that (f) every U
in U is convex. Conversely, if a neighborhood basis at 0 is chosen to
satisfy (a)—(¢), and neighborhoods of other points are defined [as in (1a)]
by trauslations of the neighborhood system at 0, then L becomes an
LTS, which is locally convex if (f) also holds. Finally, (c) and (d)
imply (g) for every U in U and % > O there exists V such that
rVeUiflr] <k

(3} (a)- Any linear subset of an LTS becomes an LTS under the relative
topology {KELLEY, p.51] determined from L. (b) With the product-
space topology [KELLEY, p. 90] in which a neighborhood basis U of 0
in RS is the set of all Ulg, &) = {x: |x(s)| < & for each s in o}, with
£ > 0 and ¢ a finite subset of S, the space RSis an LCS. (c) If Lisa
linear space, then L¥ is a closed subspace of RL.

(4) Let L be an LTS and let X, Y be subsets of L. (a) If X is open
and 7 + 0, then X is open. (b) If X or Y is open, X + Y is open.
(¢) If X is open, so is the convex hull of X. (d) The interior of a convex
set is convex or empty. (e) If X is closed and Y is compact, then X + Y
is closed.

Lemma 1. If f from one LTS L to another L' is additive and con-
tinuous at O, then f is uniformly continueus and real-homogeneous.

Proof, Let xy be a pomt of L;then U’ + f(x,) is a nexghborhood of
{(xy) if and only if U’ is a neighborhood of 0 in L’. Then there is a
neighborhood U of 0in L such that f(U) § U’. Hence f(x%,+ U) = f(xy) +
+ f(U) is contained in f(x,) + U’; i.e., f is continuous at every xz, if
‘it is continuous at 0. This proof gives uniform continuity as an extra
bonus with no more work. In any linear space an additive function is -
homogeneous over the rational field; this is proved (i) by indiiction

- for integers, (ii) by change of variable for reciprocals of integers, and
(iii) by combining these for arbitrary rationals. Then if 7 is real and (r,)
is a2 sequence of rationals converging to r, continuity of multiplication
implies (r, x) converges to rx. Hence

f(rx) =:i€mf(f.x) = lim r, f(x) = (li:n ra) [ (x) = *f(%) .

Corollary 1. An additive functional is continuous if and .only if
it is bounded on some open sét in L. '

Proof. If fis continuous, /~1({(—1, 1)) is open and { is bounded on it.
If / is bounded on an open set U by a number %, and if x,¢ U, then / is
bounded by 2% on U — x,, which eontains a U, in U. By (2g) f is
contiruous at 0; the lemma asserts it is continuous everywhere

(5) A sublinear functional p is continuous if and only if it is bounded
on an open set and if and only if {x: p(») < 1} is open, and if and only
if  is continuous at 0.
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Corollary 2. A linear functional f on L is continuous if and only if
there is an open set U in L and a value ¢ ‘which f does not take in U.
Hence an fin L# is continuous if and only if L= f-1(0) is closed.

Proof. By translation of U and additivity of f it can be assumed
that 0 € U; by (2), U contains a neighborhood V' of 0 such that r¥V' CV
if |fl 1. Then veV and |r] < 1 imply that rf(v) = f(rv) <= ¢; that is
}(v) = t/r if |r] < 1. Hence |[f{(v)| < |¢| if v € V'; Corollary 1 asserts- that
/ is continuous.

Lemma 2. Every line in an LTS L is uniformly homeomorphic to
the real number system R; more precisely, for each x + 0 in L the
mapping f(r) =rx is a uniformly Dbicontinuous one-to-one lmear
function from R onto R, the line through 0 and x.

Proof. { is linear and one-to-one. Continuity of f and of /-1 “follows
from Corollary 2.

Definition 2. An isomorphism T of one LTS L ¢nto another LTS L’
is an algebraic isomorphism (Def.2,1) of L onto a linear subspace
L, of L' such that T and T-! are both continuéus. L and L’ are called
ssomorphic whenever there is an isomorphism of L onto L'.

{6) (VON NEUMANN [2]) (a) An open subset U of an LTS L is convex
if and only if (21") U + U = 2 U. (b) If a subset U of X satisfies (2 {'),
then so does the interior of U. (c) An LTS is locally convex if and only
if there exists a neighborhood basis at zero consisting of sets satisfying
(2a to e) and (2f').

‘Lemma 3. Every one-dimensional subspace H of an LTS L is
closed in L. _

Proof. Suppose (%,, # € 4) is a net in H such that there is an xin L
for which limx,= x. Then (x,) is a Cauchy net in H; if 2+ O is in H,

the (uniformly) continuous transformation ¢« ¢z between H and R
carries (x,) = (£,2) into a Cauchy net (f,) in R. Since R is a complete
metric space, (f,) converges to some limit #. Then {z = hm iz = hm Xy
=x,s0 x€H. .

Corollary 3. Let L be an LT S and let L, be a closed subspace. Let
L, be a line in L which meets L, only at 0 and let Ly= L, + L,. Then (i)
L, is closed in L, and (ii) if 0 % x ¢ L,, the natural correspondence
(y,7) & y + 7 x between L, and Lyx R is 2 homeomorphism.

Proof. In L, define f by f(z) = f(y + 7 x) =7, where 7€ R and
y € Ly; then f is linear and f~1(0) = L,, which is closed in L, since it is
closed in L. By Cor. 2 f is continuous; hence for z=y +rx, r and y
are continuous linear functions of z. Therefore, the function F defined
by F(y + 7 ¥) = (y,7) is a continuous function from L, onto LyX R.
Continuity of the vector operations asserts that F-! is continuous.
Hence F is a homeomorphism.



