. EQUATIONAL LOGIC
| as a

PROGRAMMING LANGUAGE

Michael J. O’Donnell

3 i
SRt a5, SR

001168

EQUATIONAL LOGIC
~asa

PROGRAMMING LANGUAGE

Michael J. O’Donnell

The MIT Press
Cambridge, Massachusetts

London, England

Preface.

.
This book describes an ongoing-equational programming project that started in
1975. Principal investigators-on the project are Christoph Hoffmann and_ Michael
O’Donnell. Paul Chew, Paul Golick, Giovanni Sacce, and Robert Strandh partici-
pated as graduate students. I am responsible for the pre;entation at ha'nd, and the
opinions expressed in it, but different portions of the work described involve each of
the éeop]c listed above. I use the pronoun "we" throughout the remdinder, to indi-
cate ynspecified subsets of that éroupu Specific contributions that can be attributed
-to one individual are acknowledged bv name, but much of the quality of the work
is due to untraceah ¢ interactions between several people, and should be credited to

the group.

The equational programming project never had a definite pseudocommercial
goal, although we always hoped to find genuinely useful applications. Rather than
seeking a style of computing to support a particular application, we took a clean,
simple, and elegant style of co;nputing, with' particularly elementary semantics, and
asked what it is good for. As a result, we adhered very strictly to the original con-
cept of computing with equations, even when certain extensions had obvious prag-
matic value. On the other hand, we were quite willing to change the application.
Originally, we envisioned equations as formal descriptions of interpréters for olther’
programming languages. When we discovered that such applications led to outra-
geous overhead, but that programs defined directly by equations ran quite competi-
‘tively with LISP, we switched application from intefpreter generation to prégram-
ming with equations. |

We do not apologize for our fgnaticism about the féundatiqns of equational

programming, and our cavalier attitude toward applications. We believe that good

[

W
N

AN
;

Preface

mathcmatics i§ useful, but not always for the reasons that motivated its creation
(non-Euclidean geometry is a positive example, the calculus a negative .one). Also,
while recognizing the need for programming languages that support important
applications immediately, we believe that scientific progress in the principles of pro-
gramming and programming languages is impeded by too quick a reach for appli-
cations. The utility of LISP, for example, is unquestionable, but the very adjust-
ments to LISP that give it success in many applications make it a very imprecise
vehicle for understanding the utility of declarative programming. We would rather
discover that pure equational programming, as we envision it, is unsuitable for a

particular application, than to expand the concept in a way that makes it harder to

trace the conceptual underpinnings of its success or failure.

Without committing to any particular type of applicatio’n, we must experiment
with a variety of applications, else our approach to programming is pure specula-
tion. For this purpose, we need an implementation. The implementation must per-
form well’ enough that some people can be persuaded to use it. We interpret this
constraint‘ to mean that it must compete in speed with LISP. Parsers, program-
ming support, and the other baggage possessed by all programming languages,
must be good enough not to get in the way, but the main effort should go toward
demonstrating the feasibility of the novel aspects, rather than solving well under-

stood problems once again.

The equational brogramming project has achieved an implementation of an
interpreter for equational programs. The impiementation runs under Berkeley
UNIX* 4.1 and 4.2, and is available from the author for experimental wc:. The
current distribution is not well enough supported to qualify as a reliable tool for

*UNIX is a trademark of AT&T.

Preface
important applications, but we have hopes of producing such a stronger implemen-
tation in the next few years. Sections 1 through 10 constitute a user’s manual for
the current implementation. The remainder of the text covers a variety of topics
relating to the theory supporting équational programming, the algorithmic and
organizational problems solved in its impleméntation, and the special characteris-
tics of equational pr;)gramming that qualify it for particular applications. Some
sections discuss work in progress. The intent is to give a solid intuition for éll the‘
identifiable aspects of the project, from its esoteric theoretical foundations in logic
to its -concrete implementation as a system of programs, and its potential applica-

tions.

Various portions of the work were supported by a Purdue University XL
grant, by the National Science Foundation under grants‘ MCS-7801812 and MCS-
8217996, and by the National Security Agency under grant 84H0006. The Purdue
University Department of Computer Scisnces provided essential computing
resources for most of the implementation effort. I am grateful to Robert Strandh
and Christeph Hoffmann for critical readings of the manuscript, and to AT&T
Bell Labceratories for providing phototypesetting facilities. Typesetting was accom-

plished using the troff program under UNIX.

Table of Contents

Preface
1. Introduction
2. Using the Equation Interpreter
Under UNIX (ep and ei)
3. Presenting Equations to the Equation Interpreter
4. The Syntax of Terms (loadsyntax) ;
1. Standmath: Standard Mathematical Notation -- 13
2. LISP.M: Extended LISP Notation -- 14
3. Lambda: A Lambda Calculus Notation -- 15
4. Inner Synta;(es (for the advanced user with a large preblem) -- 17
8. ilestrictions on Equations
6. Predefined Classes of Symbols
1. integer numerals -- 22 »
2. truth_values ~- 22
3. characters -- 22
4. atbmic__symbolg - 22
7. Predefined Classes of Equations
1. Func‘tions on atomic_symbols -- 25
2, integer Functions -- 25
3. Charscter Functions -- 25
8. Syntactic Qualifications on Variables
9. Miscellaneous Examples

1. List Reversal -- 30
2. Huffman Codes -- 31

13

22

24

27
30

Contents

3. Quicksort -- 33

4. Toy Theorem Prover -- 34
5. An Unusual Adder -- 39
6. .
7
8
9

Arbitrary-Precision Integer Operations -~ 41

. Exact Addition of Real Numbers -- 46
. Polynomial Addition -- 51

. The Combinator Calculus -- 54

10. Beta Reduction in the Lambda Calculus -- 55

11. Lucid -- 62

10. Errors, Failures, and Diagnostic Aids 68

. Context-Free Syntactic Errors and Failures -- 69
. Context-Sensitive Syntactic Errors and Failures -- 69

1
2
3.
4

Semantic Errors and Failures -- 70

. Producing a Lexicon to Detect Inappropriate

Uses of Symbols (e/) -- 71

Producing a Graphic Display of Equations
In Tree Form (es) -- 71

Trace ,Oﬁtput (er) --73

6.
7. Miscellaneous Restrictions -- 74
11. History of the Equation Interpreter Project ' 75
12. Low-Level Programming Techniques 78
1. A Disciplined Programming Style Based

2.
3.

on Constructor Functions -- 78

Simulation of LISP Conditionals -- 84

Two Approaches to Errors and Exceptional Conditions -- 87

Contents

4. Repairing Overlaps and Nonsequential Constructs -- 90
13. Use of Equations for Syntactic Manipulations 98
1. An Improved Notation for Context-Free Grammaré -- 100
2. Terms Representing the Syntax of Terms -- 112
3. Example: Type-Checking in a Term Langsage -- 115
14. Modular Construction of Equational Definitions o 124
15. High-Level Programming Techniques 132
1. Concurrency -- 132
2. Nondeterminism vs. Indeterminacy -- 134
3. Dataflow -- 137
4. Dynamic Programming -- 145"
16. Implementing Efficient Data Structures
in Equational Programs 151
1. Lists -- 151 | |
2. Arrays -- 157
3. Search Trees and Tables -- 161
17. Sequential and Parallel Equational Computations. 177
1. Term Reduction Systems -- 177
2. Sequentiality -- 180
3. Left-Sequentiality -- 183

18. Crucial Algorithms and Data Structures
for Processing Equations V | 187
1. Representhg Expressions -- 187
2. Pattern Matching and Sequencmg -- 191
1. Bottam-Up Pattem Matclnng - 194

4.

2. Top-Down Pattern Matching -- 199

3. Flattened Pattern Matching -- 205
Selecting Reductions in Nonsequential
Systems of Equations -- 210

Performing a Reduction Step -- 212

19. Toward a Universal Equational Machine Language

1.

7.
8.

Reduction Systems -- 223

2. The Combinator Calculus, With Variants -- 226
3.
4
5

Simulation of One Reduction System by Another -- 235

. The Relative Power of S-K; S-K-D, and S-K-A -- 244
. The S-K Combinator Calculus Simulates All Simply

Strongly Sequential Term Reduction Systems -- 248

The S-K-D Combinator Calculus Simulates All Regular
Term Reduction Systems -- 252

The Power of the Lambda Calculus -- 256
Unsolved Problems -- 260

20. Implementation of the Equation Interpreter

1. Basic Structure of the Implementation -- 262

2. A Format for Abstract Symbolic Information -- 266

3. Syntactic Processors and 'i‘heir Input/Output Forms -- 270
Bibliography

Index

Contents

220

262

277
285

1. Illtl'odllcﬁq_ltlf(udnpted from ﬁoszb)

Computer ocienﬁsts have spent a large amount of research effort developing the
semantics of programming lahguagcs Although we ondcrstand how to implement
Algol-style procedural programmmg languages efficiently, it seems to be very
difficult to say. what the programs mean. Thc problem may come from choosing an
implementation of a language before giving the semantics that define correctness of
the implementation. In the development of the equation interpreter, we reversed
the process by taking clean, simple, intuitive semantics, and then looking for.
correct, efficient impiementations. \ '

We suggest the following scenario as a good setting for the intuitive semantics
of computdtion. Our scenario covers many, but not all, applications of computing,

(e.g., real-time applications are not included).

A person is communicating with a machine. The person gives a sequence of
assertions followed by a question. The machine responds with an answer or by -

" never answering.

The problem of semantics is to deﬁno, in a rigorous and understandable way, what
it means for the machine’s respoose to be correct. A natural informal definition of
correctness is that any answer that the machine gives must be a logical conse-
quence of the persons assertions, and that fmlure to nge an answer must mean
that there is no answer that follows logically from the asscrtions. If the language
for giving assertions is-capable of describing all the compuiable functions, the
undecidability of the halting problem prevents the machine from always detecting
those cases where there is no answer. In such cases, the machine never halts. 'l‘he
“style of semantics based on logical consequence leads most naturally to a style of

programming similar to that in the descriptive or applicative languages such as

2 1. Introduction

LISP, Lucid, Prolog, Hope, OBJ, SASL and Functional Programming languages,
although Algol-style programming may also be.supported .in such a way. Compu-
tations under logical-consequence semantics roughly correspond to "lazy evaluation"

of LISP [HM76, FW76].

Semantics based on logical oor;sequence is much simpler than many other
styles of programm%ng language semantics. In particular, the understanding of
logical-consequence semantics does not require construction of particular models
through lattice theory or category theory, as do the semantic treatments based on
the work of Scott and Strachey or those in the abstract-datastypes literature using
initial or final algebras. If a program is given as a set of assertions, then the logi-
cal consequences of the program are merely all those additional assertions that
must be true whenever the assertions of the program are true. More precisely, an
equation A=B is a logical consequence of a set E of equations if and only if, in
every algebraic interpretation for which every equation in E is true, A=B is also
~ true (see [0’D77] Chapter 2 and Section 14 of this text for a more technical treat-
ment). There is no way to determine which one of the many models of the pro-
gram assertions was rcal’ly intended by the programmer: we simply compute for
him all the information we possibly can from what we are given. For those who
prefer to think of a single model, term algebras or initial algebras may be used to
construct one model for which the true equations are precisely the logical conse-

quences of a given set of equations.

We use the language of equational logic to write the assertions of a program.
Other logical languages are available, such as the first-order predicate calculus;
used in Prolog [Ko79al. We have chosen to emphasize the reconciliation of strict

adherence to logical consequences with good run-time performance, at the expense

1. Introduction 3

of generality. of the language. Current implementations of Prolog do not always
discover all of the logical consequences of a program, and may waste much time
searching through irrelevant derivations. With our language of equations, we lose
some of the expressive power of Prolog, but we always. discover all of the logical
consequences of a program, and avoid searchi;lg irrelevant ones except in cases that
inherently require parallel computation. Hoffmann and O’Donnell survey the
issues involved in combuting with equations in [HO82b]l. Section 17 discusses the

question of relevant vs. irrelevant consequences of equations more specifically.
Specializing our computing scenario to equational languages:
The person gives a sequence of equations followed by a question, "What is E?"

for some expression E. The machine responds with an equation "E=F," where

F is a simple expression.

For our equation interpreter, the "simple expressions” above must be the mormal
Sforms: expressions containing no instance of a left-hand side of an equation. This
assumption allows the equations to be used as rewriting rules, directing the repla’cg-
ment of instances of left-hand sides by the corresponding right-hand sides. Sec-
tions 2 and 3 explain how to use the equation interpreter to act out the scenario
above. Our equational computing scenario is a special case of a similar scenario
developed independently by the philosophers Belnap and Steel for a logic of ques-

tions and answers [BS76].

The equation interpreger accepts equations as input, and automatically pro-
duces a program to perform the computations described by the equatidns. In order
to achieve reasonable efficiency, we impose some fairly liberal restricﬁons on the
form of equations given. Svection S describes these restrictions, and Sections 6-8

and 10 present features of the interpreter. Section 15 describes the computational

4) - 1. Introduction

power of the interpreter in terms of the procedural’concepts of parallelism, non-

determinism, and pipelining.
Typical applications for which the equation interpreter should be useful are:

1. We may write quick and easy programs for ?he sorts of arithmetic and list-
ménipulating functions that are commonly programmed in languages such as
LISP. The "lazy evaluation" implied by logical-consequence sem'ant,jcs allows
us to describe infinite objects in.such a program, as long as only ﬁnite portions
are actually used in the output. The advantages of this capability, discussed
in [FW76, HM76), are similar to the advantages of pipelining between corou-
tines in a procedural language. Definitions of large or infinite objects may
also be used to implement a kind of automatic dynamic programming sece

Section 15.4).

2. We may define programming languages by equations, and the equation proces-
sor will produce interpreters. Thus, we may experiment with the design of a
programming language before investing the substantial effort required to pro-

duce a compiler or even a hand-coded interpreter.

3. Equations describing abstract data types may be used to produce correct
implementations automatically, as suggested by [GS78, Wa76], and imple-
mented independently in the OBJ language [FGIM85].

4, Theorems of the form A=B may sometimes be proved by receiving the same
answer to the questions "What is A?" and "What is B?" [KB70, HO88] dis-
cuss such theorem provers. REVE [Le83, FG84] is a system for developing

theorem-proving applications of equations.

Y N

1. Introduction 5

5. Non-context-free syntactic checking, and semantics, such as compiler code-’
generation, may be described formally by equations and used, along with the
conventional formal parsers, to automatically produce compilers (see Section

13).

The equation interpreter is inteflded for use by two different classes of user, in
somewhat different styles. The first sort of user is interested in computing results
for direct human consumption, using well-established facilities. This sort of user
should stay fairly close to the paradigm presented in Section 2, should take the
syntactic descriptions as fixed descriptions of a programming language, and should
skip Section 20, as well as other sections that do not relate to the problem at hand.ﬂ
The second sort of user is building a new computing product, that will itself be
‘used directly or indirectly to produce humaniy readable results. This sort of user
will almost certainly need to modify or redesign some of the syn_tactic, processors,
and will need to read Sectiops 13 and 20 rather closely in order to understand how
to combine equationally-produced interpreters with other sorts of programs. The
second sort of user is encouraged to think of the equation interpreter as a tool,
analogous to ‘a formal parser constructor, for building whichever parts of his pro-
duct are convcnieritly described by equations. These equational programs may then
be combined with programs produced by other language processors to perform
those tasks not conveniently implemented by equations. The aim in using equations .
should be to achieve the same sort of self-documentation and ease of modification
that may be achieved by formal grammars, in solving problems where context-free

manipulations are not sufficiently powerful.

2. Using the Equation Interpreter Under UNIX (ep and ei)

Use of the equatioh interpretér involves two separate steps: preprocessing.and
interpreting.. The preprocessing step, like a programming language compiler,
analyzes the given equations and produces machine code. The interpreting step,
which may be run any number of times once pfeprocessing is done, reduces a given

term to normal form.

Normal use of the equation interpreter requires the user to create a directory

containing 4 files used.by the interpreter. The 4 files to be created are:

P

definitions - contéining the equations;

2. prein - ar; input parser for the preprocessor;

3. int.in - an input parser for the interpreter;

4. int.out - an output pretty-printer for the interpreter. v

The file definitions, discussed in Section 3, is usually typed in literally by the user.
The files pre.in, int.in and int.out, which must be executable, are usually produced

automatically by the command Joadsyntax, as discussed in Section 4.

To invoke the preprocessor, type the following command to the shell

ep Equnsdir
where Equnsdirv is the directory in which you have created the 4 files above. If no
directory is given, the current directory is use(i. Ep will use Equnsdir as the home
for severz;ll temporary files, and produce in Equnsdir an executable file named .
interpreter. Because of the creation and removal of temporary files, the user should
~avoid placing any extraneous files. in Equnsdir. Two of the files produced by ep
are not removed: def.deep and def .in. These files are not strictly necessary for

operation of the interpreter, and may be removed in the interest of space

2. Using the Equation Interpreter 7

conservation, but they_are useful in building up complex definitions from simpler
ones (Section 14) and in producing certain diagnostic output (Section 10). To

invoke the interpreter, type the command:

ei Equnsdir

A term found on standard input will be reduced, and its normal form placed on the

standard output.
A paradigmatic session with the equation interpreter has the following form:

mkdir Equnsdir

loadsyntax Equnsdir

edit Equnsdirfdefinitions using your favorite editor

ep Equnsdir

edit input using your favorite editor

ei Equnsdir <input
The sophisticated user of UNIX may invoke ei from his favorite interactive editor,
such as ned or emacs, in order to be able to simultaneously manipulate the input

and output.

In more advanced applications, if several equation interpreters are run in a
pipeline, repeated invocation of the syntactic processors may be avoided by invok-
ing the interpreters directly, instead of.using ei. For example, if Equ.1, Equ.2,
Equ.3 are all directories in which equational interpreters have been compiled, the

following command pipes standard input through all three interpreters:

Equ.1fint.in | Equ.llinterpfeter | Equ.2finterpreter |

Equ.3finterpreter | Equ.3fint.out;
Use of ei for the same purpose would involve 4 extra invocations of syntactic pro-
. cessors, introducing wasted computation and, worse, the possibility that superficial
aspects of the synfax, such as quoting conventions, may affect the results. If

-~
-

z

8 2. Using the Equation Interpreter

Equ.1, Equ.2, and Equ.3 are not all prdduced using the same syntax, careful con-
sideration of the relationship between the different syntaxes will be needed to make

sense of such a pipe.

After specifying the directory containing definitions, the user may give the size
of the workspace to be used in the interpreter. This size defaults to 219~1=32767:
the largest that can be addressed in one 16-bit word with a sign bit. The
workspace size limits the size of the largest expression occurring as an intermediate
" step in any reduction of an input to normal form. The effect of the limit is blurred
somewhat by sharing of equivalent subexprcssiqns, and by allocation of space for
declared symbols e\;cn when they do not actﬁally take part in a particular computa-

tion. For example, to reduce the interpreter workspace to half of the default, type

. ep Equnsdir 16384

The .l'argest workspace usable in the current implementation s
231-2f2147483646. The limiting factor is the Berkeley Pascal compiler, which
will not process a constant bigger than 231-1-2147483647, and which produces
mysteriously incorrect assembly code for an allocation of exactly that much. On
current VAX Unix implementations, the shell may often refuse to run sizes much
larger than the default because of insufficient main memory. In such a case, the

user will see a message from the shell saying "not enough core” or "too big".

