I.1.Gihman A.V. Skorohod

The Theory of
Stochastic Processes I

Translated from the Russian
by S. Kotz



[.I.Gihman A.V. Skorohod

The Theory of
Stochastic Processes 1

Translated from the Russian
by S. Kotz

Springer-Verlag
Berlin Heidelberg New York 1974



losif ich Gihman
Academy of Sciences of the Ukrainian SSR, Institute of Applied
Muathematics and Mechanics, Donctsk

Anatolif Viadimirovich Skorohed
Academy of Sciences of the Ukrainian SSR, Institute of Mathematics. Kiev

Translatoi .

Samuel Kotz
Department of Mathematics. Temple University, Philadelphia

Title of the Russian Original Edition: Teoriya sluchainyh
protsessov. Vol. 1. Publisher: Nauka. Moscow 1971

AMS Subject Classification (1970)° 60-02 &0 G xx

ISBN 3-540-06573-3 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-06573-3 Springer-Verlag New York Heidelberg Berlin

This work is subject to copyright. All rights are reserved. whether the whole or part |
of the material is concerned, specifically those of translation, reprinting, re-use of
illustrations, broadcasting, reproduction by phatocopying machine or similar means,
and storage in data banks. Under §54 of the German Copyright Law where copies
are made for other than private use. a fee is payable to the publisher, the amount of
the fee to be determined by agreement with the publisher. ¢ by Springer-Verlag
Berlin - Heidelberg 1974. Library of Congress Catalog Card Number 74-2552. Printed
in Germany. Typesetting: D. Reide), Book Manufacturers, .Dordrecht - Holland.
Printing and bookbinding: Konrad Triltsch, Wiirzburg.



Preface

We have endeavoured in this planned three volume work to present an
exposition of the basic results, methods and applications of the theory of
random processes. The various branches of the theory are. however. not
treatec in equal detail.

This volume should be of value principally to mathematicians who are
interested in studying the theory of random processes. We hope that
researchers who apply the methods of the theory of rundom processes
will also find the book interesting and useful. Prerequisites to the study
of this book are basic courses in probability theory. measure theory and
integration, and functional analysis.

The first volume of “The Theory of Randon Processes’ is devoted to
general problems of the theory of random tunctions and meastre theory
in function spaces. Some of the material presented  the authory” book
“Itroduction to the Theoryv of Random Processes ™ (Brgebnisse de
Mathematik Band 72) is utilized here. Chapters THO IV V oand X of the
Introduction have been revised and now constitute the contents ot Chap-
ters [, 11, IV and VI respectively

In volume I1, the following topies are treated : the general theory ot
Markov processes, the theory of processes with independent mcrements,
jump Markov processes, semi-Markov processes and branching processes,

The third volume deals with the theory of martingales, stochastic
integrals, stochastic differential equations. diffusion processes snd himit
theorems associated with stochastic differential equations.

I. 1. Gihman and A. V. Skorohod
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Chapter I

Basic Notions of Probability Theory

§1. Axioms and Definitions

Events. The basic notions of probability theory are experiment, event
and probability of events.

A formal description of these notions is usually based on the set-
theoretical model of probability theory developed by A. N. Kolmogorov
in 1929.

The experiments studied in probability theory (referred to as stoch-
astic experiments) are carried out when a certain set of conditions Y is
satisfied. This set of conditions does not uniquely determine the results
of the experiment (also called the outcome or realization). This means
that if the experiment is repeated (provided that the set of conditions ¥
is accurately satisfied) the results of the expériment will generally be
different. }

When formalizing the notions of probability theory the first funda-
mental assumption is that the results of a collection of experiments
under investigation in a given situation can be described by means of a
certain set Q. Every meaningful event (occurring or not during the given
experiment) corresponds to a certain subset 4 of Q in such a manner that
the probabilistic operations on events correspond to set-theoretical oper-
ations on the corresponding subsets of Q.

Moreover, the points weQ correspond to atoms - namely, every
event is a sum of points while each point w cannot be represented as a
sum of other events. For this reason the points bclongmg to {2 are called
elementary events.

In relation to Q, an experiment is completely characterized by the
class of those events (subsets of Q) such that one can assert in each case
whether it did or did not occur during the given experiment. These events
are called observable (in the given experiment). :

Henceforth we shall adhere to this model of probablhty theory and
identify events with the corresponding subsets of Q. The resulting dual
terminology is presented helow in a glossary translating set-theoretic
notions into probabilistic notions.
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&

Set theory : Probability theory

Space Q Sure cvent

w apoimtof @ Elementary event

0 the empty set Impossible event

A4 asubsetof Q. 4= Event

The set 4 is contained in B(A < B) Event 4 implies B

C the sum (union) of sets A and B C the sum (union) of cvents
(C=AuB) Aand B

C theintersection of sets A and B C the intersection {or product) of events
(C=AnB) 4and B '

A the complement of sct A A the comrary event of 4

C  the difference of two sets 4 and B ¢ the difference of events 4 and B
(C=A"B) ’

Sets 4 and B arc without common points Events A.and & are disjomnt

(4~B=0). .

We note that any arbitrary subset of £ is called an event. However. from
both a practical as well as a purely mathematical point of view it does
not make sense to regard any arbitrary subsets of Q s cvents worthy
of interest. Therefore one must select out of Q a suitable cluss of events.
This class should be sufficiently wide and contain all the events which
may arise during the solution of various practical problems. On the
other hand. the size of this class is limited by the feasibility of effective
utilization of mathematical techniques, Obviously, the problem of se-
lecting the corresponding class of events should be solved individually
in each case, however, we shall always éssumq subsequently that this
class forms a g-algebra of events.

Definition 1. A class of events ¥ is called an algebra of erens if it con-
tains the sure event Q, the impossible evenit 0 and together with cach
pair of events A and B belonging to the class, their sum as well as the
contrary event 4.

Two events Q and @ constitute the rrivial alyebra.
The minimal algebra containing event A consists of four events: ©,
Q. 4and 4.

Definition 2. An algebra of events which contains a sequence of events
along with their sum is called a g-algebra.

It is clear that in the definitions and properties above we could have
referred to algebras and g-algebras of sets of a certain abstract space Q.

Definition 3. The space Q along with the o-algebra of sets A defined on
it is called the measurable space {§2, U} and the subsets of Q belonging
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to A are called N-measurable sets (U-measurable events) or simply meu-
surable sets (events) if no amblguny arises concerning the o-algebra under

consideration.

The o-ulgebra of all the events under consideration in a given situ-
ation is usually denoted by the letter &. With respect to the measurable
space (§2, ) any given stochastic experiment is completely characterized
by the class of events & observed during this experiment. Clearly, (this
class is contained in €2 and it is also evident that the class § is closed
with respect to the operations of addition, intersection and complemen-
tation. It is therefore natural to consider & a o-algebra of events. There-
fore, formally a stochastic experiment is determined by a certain o-
algebra § of’ E-measurable events. We call it the o-alyebra corresponding
10 the given experiment.

Probability. Definition 4. A triple (2, . P) consxstmg of a space of ele-
mentary events €2, a selected g-algebra of events 3 in Q. and a measure
P defined on S such that P(Q)=1 is called a probability space and the
measure P is called the probability.

Probability spaces are the initial objects of probability lheory This.
however, does not contradict the fact that when solving many <pecific
problems the probability space is not given explicitly. ‘

We present below several of the simplest well known properties of
probability which eusily follow from its definition (Sand S,, n= L2
as given below all belong 10 2):

a) P{0)=
by if $,~S,=0. k#r. then P(k ‘ S) ZP (S

¢) if S, =S, then P(S, S))= P(S \~P(S)
d) P(S)=1-P(8):

¢y if S,=S,.,. n=1.2..... then P{JS )»:hmP(Sn):
. J

N S,=5..,. n=l.

‘l\)

then P(ﬂ s, )b.h'mP(S,‘).

Random variables. The concept of a random variable corresponds to the -
description of i stochastic experiment which measures a certain numer-
ical quantity £. Itis ussumed that for any pair of numbers a and b (a<b)
the event ~ {u. b} expressing that e(a. b) is an observable event.
The mininul 6-algebra ¥, containing all the events A{a, b)), — x <a<
<b<x is the s-algebra corresponding to this stochastic experiment.
Let 4, (- « < v« x) denote the event £=x. This event is measur-
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@
able. Indeed 4, = M A(xsé, x+-:—7>. Moreover, if x, # x;. events 4,
n=1

and A, are disjoint (this follows from the single-valuedness of the mea-
surement results) and the union of all 4,, — oo <x <oc, s the set §2, since
the measurement result is always represented by some real number. We.
now define a single-valued real function f{w), we® by setting f(w)=x
if we A,. It follows from the definition, that {= f(w) in each experiment
and, moreover, that the set {w:a< f{w)<h} = A(a, b) is measurable. Re-
call that a real-valued function f(w) defined on a measurable space
(Q, €} is called measurable (S-measurable) if for any two real numbers
a and b the sct {w:a< f(w)<b}e, Therefore, a random variable ¢ can
be identified with a certain measurable function on the probability space
(Q.3,P).

Definition 5. A S-measurable real-valued function of elementary events
e is called a random variable § (on a given probability space {2, &. P}).

Henceforth, we shall occasionally consider measurable functions on
{Q. &.P} which may possibly take on the values + o also, or functions
which are defined only on _a measurable subset of {Q, c, P}. These
functions are called generalized ran;om variables.

We note the followmg point connected with the definition of a
random variable. [t is commonly assumed that from the empirical
point of view one cannot distinguish between events which differ on
an event-of probability zero. It would therefore be natural to identity
two random variables ¢ and n which are equal to each other with prob-
ability I and hence interpret a random variable as a class of measurable
functions, in which each pair of functions may differ only on a set of
probability 0. Such functions are called equivalent (or P-equivalent).
This point of view is also justified by the fact that the majority of notious
introduced here as well as the relationships obtained refer essentially
to classes of equivalent functions. However, a consistent adherence to
this point of view presents certain technical as well as basic problems.
For this reason it would seem more convenient to regard random varia-
bles as individual functions and use special notation for their equivalent

. classes.

Definition 6. Random variables £ and n are cglled equivalent (P-equiv-
alent) if P {£ £y} =0. The P-equivalence of 2 random variables ¢ and g
is denoted by £ =# (mod P).

Equivalent random variables are also referred to as sausfymg &=y
almost surely (a.s.} or £ =n with probability 1,

Analogous lcrminology and notation is also used in more general
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cases. We thus say that a certain function (or certain other objects)
possess property H almost surely (for almost all w or for all w (modP))
if the set of w for which this property is not satisfied is of probability 0.
For example, if a sequence of random variables ¢,= f,(w) converges to
<= f(w) for each w except for a certain set N and P(N)=0, we say that
£, converges to ¢ almost surely or that

=lim¢, (modP).

We now present a number of basic properties of random variabies
which follow directly from the corresponding properties of arbitrary
measurable functions. It is assumed that the random variables are
defined on a fixed probability space {Q. 3, P}.

a) If h(r,.t,.....£,) 1s an arbitrary Borel function of n real variables

fyoootyoand &40 5,0 Z, are random variables, then 2(&,. &,,.... Z)is
also a rdndom variable.
b) If {{,;n=1.2....] is a sequence of random variables. (hen,

sup &,. infé,, im¢&,, lim &, are also random variables.

ence a very wide class of analytic operations commonly performed
on functions transforms a random variable into a random variable
independently of the specific form of the g-algebra S. It is easy to see
that these operations do not interfere with the equivalence relations
between the random variables. More precisely:

c) If ¢, and n, are equivalent (n=1.2....), and h{r,.¢5,....1,) is a
Borel function of n real variables. then (S, &,...., S Jand A (i, 130y 1)
are also equivalent. Moreover. the following palrs of random varlables
are equivalent as well: sup ¢, and sup#,,, inf¢, and infy,, lim & £, and limy,,
lim &, and lima,.

d) Let £, n=1,2,... be a sequence of random variables. The eyent
S=1{lim¢, exists} is S-measurable. It is easy to verify that this event
can be represented as:

5_ m U m {‘J ]gml $m1!< }

k=1 n=1my.my>n

Indicators of events serve as an important example of random variables.
The indicator of an event A is a random variable y = x,(w) defined as
follows:

nw=1 if wed
Lalw)=0 if wé¢Ad.

If Ae 3, then x () is ©-measurable.
Note the correspondence between set-theoretical operations on

.
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events and the analogous algebraic operations on indicators:

12

7 (m)::Z rolw)y, i 4nd, =0 for k#£r.
T A ko

Yara(®)=14 (v) 2p(w).

taesw)=yw) —rp(e), f Bc.d.

Liim ,4,,(”)) =lim S An (w). Alim A, (w)=Ilim ZA.,((»’J)-

A random variable £ i1s called discrete if it admits only a finite or
countable number of distinct values. Such a variable can be expressed
as $= ) ¢xa () where A, are S-measurable sets pairwise disjoint and
43 5 = 2, Sl k

[

U A4,=Q. For each w only one summand is nonzero in the r.h.s. of the
L3

last equality and ¢ =¢, if we . {,. For an arbitrary random variable & one
can always construct a sequence &, of discrete random variables taking
on only a finite number of possible values and converging to & for each
m. To prove this assertion it is sufficient to set

. n—1 n ) k—l
LD (J+*-—>1A,k,

j=-nk=1 n
where

k=1 k
Ap={w:j+ —<<I<j+-}.
4] n

P
It then follows that |& — & | <~ if |E]<n,

1
Itis easy to verify that for a non-negative & one can construct a mono-
tonically increasing sequence of non-negative discrete random variables
{taking on a countable number of values) uniformly converging to ..
Indeed, in this case we set

§"=k§o§;zﬁk", where At,,={w:;,<g‘<;;“}-

Then 0< i ~¢, <27 for all w.

Random elements. The notion of a random variable can be generalized
to the notion of a random element with the values in an arbitrary mea-
surable space {¥,B}. Let {Q, S} and {Z, B} be two measurable
spaces. The mapping g:w—x (xeX) is called a measurable mapping of
{2, &} into {7, B} if g™' (B)={w:g(w)e B}eS for an arbitrary BeB.

Definition 7. 4 random element & with values in a measurable space
{Z. B} is a measurable mapping of {2, 3, P} into {«. B}.
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If Z is a metric space then B is always assumed to be a g-algebra of
Borel sets (unless stipulated otherwise). If ¥is a vector space, then  is
called a random vector.

Let a sequence of random elements {£,; k=1,2,....n] be given,
defined on a fixed probability space {2, 3, P} with values in the spaces
{Z,. B, correspondingly. This sequence can be considered as a single
random element ¢, which will be called the direct product of random
elements Z,..... £,. with values in a measurable space {#. B} where

n

sne
n
4 =[] 4, is the product of the spaces Xy, X,..... £, and B=]] B,
k=1 1
is the product of the g-algebras 8B,. 8,..... B,.
The last remark is also valid in the more general case of an urbitrary
set of random elements (.. xe 4. with the values in {#,. B,; wiere 4 15
a set of indices. Here the product # =[] Z, represents the space of all
. IEA
the mappings v=v{x): 2-x,: x,e ¥,. xe A. i.e. the space of all functions
defined on A admitting a value in £, for each xe A,
A cylindricalsetin # is called a set C of all ve # satisfying the relations
of the tvpe
v(z)eB, . .k=1,....n B,eB, .

Here n is an arbitrary integer and 2z, are arbitrary elements of A4.
More precisely. we call C=C, , (B, x...x B, ) a cylindrical set with
the bases B, xB,, x...x B, over the coordinates 2,.x,..... %, The
minimal g-algebra containing all the cylindrical sets 1s denoted by B and
is called the product of g-algebras B,. B="T] B,. It is easy to observe

xc A

that the mapping g:w-yv(x) defined by the relations g(w}=g{w. )=
= f,(w} where f,(w)=¢&, 1s a measurable mapping of {Q, S/ into {#. B}
It all 7, are the same. %, = then # =4 represents the space of all
functions with values in.# defined on A and the mapping g ()} associates
a function from .71 with cach elementary event . in other words the
mapping ¢ () is a random function. Thus, the family of random variables
1&,. x4} may be regarded as a random function.

Let = f{wj} be a random element with the values in {%, B .

Definition 8. A4 o-algebra yenerated by a random element & is a s-algebra
o or (&) consisting of all sets of the form { /™ '(B): BeB}.

Clearly the class of sets {f "'(B); BeB) is a g-algebra.

The following statement is an equivalent formulation of the above:
the g-algebra g, is the minimal o-algebra in Q with respect to which the
random element ¢ is measurable.

[t is intuitively clear that measurability of a certain random variable g
with respect to o, means that 1 is a function of ..
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Lemma 1. Let {=f(w) be a random element on (2, S, P) with values in
(Z, B} and n be a o-measurable random variable. Then there exists a B-
measurable real valued function g(x) siech that n=g(%).

Proof. Assume that # is a discrete random variable admitting values a,.
n=1,2... Let A,={w:n=a,}. Then there exists B,eB such that
n—1

S~ !(B,)=A4,. Put B,=B,, \U B,. The sets B,c® are disjoint, f ~!(B))=
k=1
n—1

=4, U A,=4,, and f’l<u B,’,)——-U A.=Q, ie. f(Qjc=U B,. Now
1 i 1

k=1

put g{x)=a, if xe B,. Then n=g(¢&).

We now constder the general case. There exists a sequence of discrete
o.-measurable random variables »,, convergent to i for each w. Tho.
fore n,=g, (&), where g,(x) is B-measurable. The set of points $ on which
the functions g,(x) converge to a certain point is ‘B-mcasurable. it con-
tains /(Q) and limg,{(x)=limy, =9 for xef(Q). Putting g(x)=limg,(x)
for xe§ and g(x)=0 for x¢$§ we obtain y=¢(¢). O

Mathematical expectation. The mathematical expectation of a random
variable is its most important numerical characteristic. This notion
corresponds to the intuitive notion of the value of the arithmetic mean
of observations on a random variable in a long sequence of identical
stochastic experiments.

By deitnition the mathenmatical expectation of a random variable
&= f{w) is equal to the integral of f{(w) with respect to the measure P.

We denote it as
Eé= J J{w)Pldw)= jgdP

Q

Often the designation 2 of the region of integration is omitted. Mathe-
matical expectation possesses.a number of properties which are well.
known from the theory of abstract integration.

Convergence in probability. Various types of convergence of sequences
of random variables play an important role in probability theory. The
definition of convergence with probability 1 (almost surely) was presented
earlier.

Definition 9. If there exists a random variable ¢ such that for any ¢>0

« P{|¢,—&|>e} -0 as n—ow,
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we say that the sequence {&,; n=1,2,...} converges in probability to the
random variable £ and denote
E=P-limé&,.

In measure theory convergence in probability corresponds to con-
vergence in measure. The following corollaries follow from the general
results of measure theory:

a) If a sequence {&,;n=1,2,...} converges almost surely it converges
in probability. The converse is generally not true. However, a subsequence
which converges almost surely can be selected from a sequence of random
variables convergent in probability.

b) A necessary and sufficient condition for convergence in probability
of a sequence of random variables is as follows: for arbitrary ¢>0 and
0>0an ny=n{e, d) can be found such that for n and n'>n,

P{lfn—én‘>8}<5

This condition is called the condition of fundamentality in probability of
the sequence {&,,n=1,2,...}.
¢) If {=P-lim¢, and = P-lim¢, then & =n(mod P).
d) Let n,=P-lim¢,,(k=1, 2,..., m) and let the function @(i,,!5,...,
t ) be everywhere continuous in the m-dimensional Euclidean space #™,
except possibly on a Borel set D(D < R™) such that

P{(n:, N3..... 1m)ED}=0.

Then the sequence &,=@(&,,, Eapr--s Emn) COnverges in probability to
N=@ (N1 N2s-..» M) Int particular, if the sequences &, are convergent in
probability, so are the sequences &, +Cyp. &1 ,62, and &4,/E,,, the latter
under the assumption that P {P-lim&,,=0}=0 and, moreover

P-lim(¢,,+£,,)=P-lim¢&,, +P-liné&,,, P-lim él,,_P-lim{l,,
P-lim(&,, &,;,)=P-im& P-lim¢,,, ¢2n ~ P-lim 5211.

A suificient condition for convergence with probability 1 as stated be-
low is useful in various specific problems:

Lemma 2. If there exists a sequence g,> 0, such that
Z P{I:n+l_cn|>£n}<w’ Z £, <20,
n=1 n=1

then &, converges with probability 1 to a certain random variable &.
If for any £>0,

4_‘: P{le—¢I>e) <

then £, converges to & with probability 1.
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Proof. Let A, denote the event (£, . — <[> ¢,. Then

¥ 3 AN be
P(lim ,4,,):P( md A,,);\'f im Y P(,)=0.
=L onEm m-*x m
Therefore, the terms of the series &)+ N (&, — 1) starting with seme

1
index m=m(m) are dominated with probability 1 by the terms of the

ks
convergent series Y ¢,. This proves the first assertion. Next. lel

el

N
’ B\n:{[‘;"‘.nl’):\;}'
Then

N=1 - N om0 n=m

Pilim (- >0 »-—‘P{ oo u BN,,}-\: lim iim Y P(By,)=0.
in=m

which proves the second assertion. 1 '
£ ,-spaces. By ¥, ,=17 (Q. Z.P) (p=1) we denote a linear normed
space of random variables I on (Q. Z,P) satisfying EI{|P< . The
norm in ¢, is defined by

L2

I EfEI

The convergence of the sequence £, to its hmit & in &, (the & ,-con-
vergence) signifies that

EIZ-&,P=»0  as n- .

The ¢ -convergence implics convergence in probability. This fact
follows directly from Chebyshev’s inequulity
T __x P
PUIE, ~ &> ) <El*-_7%z" .
&

The space &, is complete. The most important & -spaces are & =%
and #,. We shall now discuss %, in_some detail. Note that all the
definitions above and the theorems in this section are valid with no
modifications for the complex-valued random variables.

The space ¥, =2,(R, S, P) of complex-valued random variables
becomes a Hilbert space if we define in &,, for each pair of random
variables ¢ and », their scalar product putting it equal to E&.

Two random variables ¢ and # are called orthogonal if E[4=0. In
the case when £ and y are real and E{ =E» =0, orthogonality is equivalent
to the property that variables are uncorrelated. Convergence of the

-~



